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FOREWORD

This volume contains 12 papers prepared by agencies working
in trajectory analysis and guidance theory with the Computer
Research Laboratory of the NASA Electronics Research Center.

The papers are concerned with special studies performed in
guidance theory, optimization theory, numerical methods, and
celestial mechanics. They include:

1. An extension of the classical theory of calculus of
variations to include varying number and types of
constraints;

2. A development of theory for relaxed controls for
integral equations;

3. A generalization of the above case to one where the
class of controls may, but need not, consist of
relaxed controls;

4, An application of Hamilton-Jacobi theory to a planar
trajectory optimization problem;

5. A presentation of a method of obtaining a complete
integral of the Hamilton-Jacobi equation associated with
a dynamical system in which constants of motion are
known;

6. A method of solving two-point boundary-value problems
by an offset vector iteration method;

. A linearized guidance procedure based on minimum
impulses for space trajectories;

8. A set of equations for computing orbits in closed form
using the spheroidal method of calculation; in particular,
they are good for polar and near-polar orbits;

9. A procedure for developing expansion formulas in
canonical transformation in which the form is developed

for speedy computerized symbolic manipulation;

10. A formal solution of the n-body problem in Taylor
series;

11. A paper on the long period behavior of a close lunar
orbiter;
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FOREWORD

12. A presentation of non-linear resonance theory with
an application.

These papers cover work performed from 1 October 1967 to
1 February 1969. This work was supervised by personnel of the
Computer Research Laboratory.
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SUMMARY

This volume contains technical papers on NASA-~
sponsored studies in the areas of trajectory analysis
and guidance theory. These papers cover the period
beginning 1 October 1967 and ending 1 October 1968.
The technical supervision of this work is under the

personnel of the Computer Research Laboratory at NASA-ERC.
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INTRODUCTION

By William E. Miner
Chief, Computation Theory
and Techniques Branch
NASA Electronics Research Center

This document contains 12 technical papers covering work
sponsored by the Computer Research Laboratory of the NASA
Electronics Research Center in the fields of guidance theory,
optimization theory, numerical methods, and celestial mechanics.

The following table lists the authors, contributing

institutions,

and the disciplines of each paper.

Author

Institution/Company

Discipline

J. L. Linnstaedter Arkansas State Univ. Optimization Theory
J. Warga* Northeastern Univ. Optimization Theory
S. K. Lakhanpal Vanderbilt Univ. Optimization Theory
P. M, Fitzpatrick/ Auburn Univ. Optimization Theory
J. E. Cochran

C. F. Price MIT Numerical Methods
T. N. Edelbaum AMA Guidance Theory

J. P, Vinti MIT Celestial Mechanics
A, A. Kamel Stanford Univ. Celestial Mechanics
P. Sconzo/ IBM Celestial Mechanics
D. Valenzuela

R. Dasenbrock Stanford Univ. Celestial Mechanics
W. T. Kyner Univ. of So. Calif. Celestial Mechanics

*Two papers

The above characterization is made only in a general way.
Work done in optimization theory may have application in

trajectory analysis,
celestial mechanics.

applications to that theory.

in many disciplines.

control theory,

guidance theory,

and/or

Work done in celestial mechanics often
overlaps into the area of optimization theory with potential

Numerical methods find usages



INTRODUCTION

Synopses of the individual papers are presented below:

Paper No. 1

The first paper, written by J. L. Linnstaedter of Arkansas
State University, presents a generalized, multistage problem of
Bolza in the calculus of variations. The differential con-
straints and the number of differential constraints may be
different for each of the various stages. The stages are allowed
to degenerate. Discontinuities at staging points are permitted.
The paper presents a multiplier rule and analogues of the
Weierstrass and Clebsch conditions.

Paper No. 2

The second paper, written by J. Warga of Northeastern
University, covers relaxed controls for functional equations
where the functional values of the state are considered as
known functions of states and controls. These equations are
constrained by known functions of the states and controls, and a
function of the controls and states is minimized. The controls
are embedded in a set of "relaxed controls'" so that the exist-
ence of a relaxed minimizing point and an approximate solution
may be obtained under mild assumptions. Theorem 2.1 presents
the results described above. The proof is presented in
paragraph 5. The paper presents theorems based on the special
case of a control problem defined by a Uryson-type integral
equation.

Paper No. 3

The third paper, also written by J. Warga of Northeastern
University, is a generalization of the second paper in this
compilation. The existence of an original (unrelaxed) control
is assumed. It is shown that the generalizations of the
Weierstrass E-condition and the transversality conditions
presented in the second paper remain essentially valid for an
original control. The generalization is in the sense that the
classof controls may, but need not, consist of relaxed controls.
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Paper No. &

The fourth paper, written by S. K, Lakhanpal of Vanderbilt
University, presents an application of Hamilton-Jacobi theory
to a planar thrusting trajectory in a centralforce field. The
paper presents the background theory needed to formulate and
solve the "base" problem (thrust is equal to zero) and applies
it in the problem using two different methods. The complete
integral is obtained by Lagrange's linear equation in the first
application and by Jacobi's method in the second application.
In both applications Hamilton's equations are presented in the
transformed variables.

Paper No. 5

The fifth paper, written by P. M. Fitzpatrick and
J. E. Cochran of Auburn University, covers the use of Liouville's
theorem for deriving a generating function for transformations
of a Hamiltonian system. Methods are developed for making
transformations which make use of the known constants of
integration by putting the variables and constants in the form
so that Liouville's theorem may be applied. The methods are
then applied to two examples. The examples are the orbit in
the central force field and free motion of a triaxial rigid
body.

Paper No. 6

The sixth paper, written by C. F. Price of Massachusetts
Institute of Technology, presents an offset vector iteration
method for solving two-point, boundary-value problems along
with a modification. The method depends on an "approximate
solution". It has the distinct advantage of moving toward
the desired solution with each pass through the ordinary
differential equations of motion and, therefore, if the
"approximate solution" gives a solution sufficiently near the
desired end conditions, it may converge on the end conditions
with far fewer passes through the ordinary differential
equations than higher order methods. It is pointed out that
the information generated may be stored for use by higher
order iteration procedures, should this be desirable.
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Paper No. 7

The seventh paper, written by T, N, Edelbaum of Analytical
Mechanics Associates, Inc., presents a linearized guidance
procedure for a space trajectory. The space trajectory is a
minimum-fuel trajectory and the thrusting is impulsive. The
guidance corrections are impulsive and are designed to be
valid in the neighborhood of the nominal trajectory. This
paper covers three different problems; (1) the time-open
rendezvous case, (2) the time-open orbit transfer, and
(3) the time-open orbit transfer where one or more finite
impulses are tangent to the velocity vector.

Paper No. 8

The eighth paper written by J. P. Vinti of Massachusetts
Institute of Technology presents a set of equations for
computing orbits in closed form using the spheroidal method

(Vinti potential) of calculation. The equations are good in
the general case and in particular they are good for polar
and near polar orbits. The paper develops the changes in the

known equations so that near the polar orbits division by
differences of near equal quantities (near zero) is avoided.
Thus, the numerical accuracy is enhanced. The procedure trans-
forms the equations so that an explicit parameter for the

right ascension does not appear. This is the troublesome
variable.

Paper No. 9

The ninth paper, written by A. A. Kamel of Stanford
University, presents procedures for developing expansion
formulae in canonical transformations depending on a small
parameter where the implementation of such perturbation theory
is put in a form for speedy computerized symbolic manipulation.
"Deprits' equations" are developed using a linear operator
called Lie derivative generated by W, where the

generating function W has a special form. Recursive relation-
ships of the transformed variables and Hamiltonian are then
developed. These recursive relationships are then modified

by the introduction of intermediate functions to increase the
speed of computerized symbolic manipulations.
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Paper No. 10

The tenth paper, written by P. Sconzo and D. Valenzuela
of International Business Machines' Cambridge Advanced Space
Systems Department, presents a formal solution of the n-body
problem, This solution is a Taylor series in time for each of
the 3n variables with coefficients generated recursively from
the 6n initial conditions. It is obtained by a careful selection
of intermediate variables and by the use of PL/1 FORMAC.

Paper No. 11

The eleventh paper, written by R. Dasenbrock of
Stanford University, is on the long period behavior of a close
lunar orbiter. A reference frame is chosen which is rotating
with the moon with the x-axis in the equatorial plane determined
by Cassini's law and the z-axis along the axis of rotation of
the moon. The Hamiltonian is written in this rotating system in
mixed Keplerian and Delaunay variables. The parts of the
Hamiltonian are then ordered and integration of the equations
is obtained with the short period terms averaged out by a
series of canonical transformations. It is pointed out that
there are 11 critical inclinations. Near these inclinations
the von Zeipel method, which was used, fails., The case of the
polar orbit is discussed separately. Phase plane contours of
H "and h" with constant F** are presented and discussed. This
work is a continuation of earlier work done by J. Vagners
documented in NASA-ERC PM-67-21, pp. 213-228.

Paper No. 12

The twelth paper, written by W. T. Kyner of the University
of Southern California, contains an exposition of the theory of
non-linear resonance followed by application to the J

. A - 2% :
perturbations on the orbit of a 24-hour synchronous satellite.
The expository portion is based on lectures delivered at the
1968 Summer Institute of Dynamical Astronomy. In the application,
it is shown that the longitude on a synchronous satellite
satisfies a pendulum equation on the average. The validity of
the pendulum model is restricted to time intervals of the
order of l//J22.



INTRODUCTION

Two internal publications authored or co-authored by
members of the sponsoring laboratory and in the subject
technical fields have appeared since the last compilation.
These are listed below with their summaries.

Miner, William E.: The Equations of Motion for
Optimized Propelled Flight Expressed in Delaunay
and Poincare Variables and Modifications of These
Variables. NASA TN D-4478, May 1968.

SUMMARY

This document presents methods for developing the ordinary
differential equations (o.d.e.) of motion in canonical form
equivalent to the forms of Delaunay and Poincare. It also
presents modifications to these forms so that three variables,
which are constants of motion, result while the forms remain
canonical.

The equations of motion are for a vehicle propelled by
constant thrust magnitude with a constant mass flow rate.
The vehicle is moving in a central force field. The trajectories
are optimum in the sense of classical calculus of variations in
a neighborhood definable by the boundary conditions of the
specific problem. Specific problems are not discussed in
this document.

The value of the document lies in two major areas:

1. The possible economics in numerical calculations which
may result from using these ordinary differential
equations, and

2. The application of the general perturbation theory of
classical celestial mechanics to approximate solutions
of these ordinary differential equations.

This document has been written to record the results of the
investigation and was not meant to be a tutorial treatment of
the subject. For such treatment, the references listed below
are recommended by the author:

1. Bliss, G. A,: Lectures on the Calculus of Variations.
University of Chicago Press, Chicago, I11., 1961.

2. Goldstein, H.: Classical Mechanics. Addison-Wesley
Publishing Co., Inc., Cambridge, Mass., March 1956.
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3. Ford, L. R.: Differential Equations. McGraw-Hill Book

Co., Inc., N. Y., 1933.

4., Smart, W. M.: Celestial Mechanics. Longmans, Green,

and Co., Ltd., London, 1953.
ISIT2 1L,

Hoelker, R. F., and Winston, B. P.: A Comparison of a
Class of Earth-Moon Orbits with a Class of Rotating
Kepler Orbits. NASA TN D-4903, November 1968,

SUMMARY

In two concurrent series of graphs, a class of orbits in

the Earth-Moon (E-M) field and a class of Kepler orbits in
rotating coordinates are depicted and compared.

A general discussion of characteristics of rotating Kepler

orbits is included.

The model used for the E-M orbits is that of the restricted

problem of threebodies. The orbits of the class depicted

originate at the E-M line, half of the E-M distance beyond the

moon with velocity orthogonal to the E-M line within the E-M
plane.
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A GENERALIZED MULTISTAGE PROBLEM OF

BOLZA IN THE CALCULUS CF VARIATIONS, I*

By J. L. Linnstaedter
Associate Professor of Mathematics
Arkansas State University
State University, Arkansas

SUMMARY

The problem is to find in a class of admissible arcs, satisfying
certain multistage differential equations of constraint and end and
intermediate point constraints, one which minimizes a Bolza type
expression. The differential constraints may be different and different
in number on the separate stages. Admissible arcs are continuous and
piece-wise smooth in each stage but may be actually discontinuous at
stage boundaries. The number of stages is bounded but otherwise not
predetermined, since any stage will be allowed to degenerate to a null
status. This is a generalization of the Denbow multistage extension of
the Problem of Bolza. Appropriate imbedding theorems, a multiplier rule,
and analogues of the Weierstrass and Clebsch conditions are obtained.

The theory of the second variation, the accessory minimum problem,
and conjugate point conditions have been developed and will be presented

in a subsequent paper.
INTRODUCTION

This study was motivated by the multistage character of many space-
flight optimization problems. The problem treated is a generalization

of the Denbow multistage extension of the Bolza problem [reference 3].

*Mmis work was largely done at Vanderbilt University on NASA Research
Grant NGR 43-002-015. The author wishes to thank Dr. M. G. Boyce for
many helpful discussions during the performance of this research.
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MULTI STAGE PROBLEM OF BOLZA

It is a generalization in the sense tnat the diiferential constraints
may be different and different in number on the various stages, stages
are allowed to degenerate, and discontinuities at staging points are
pernitted. The oroblem is approached directly as a multistage problem
using extensions of the methods used on the Bolza problem [1). This
approach avoius the transforumation to a Bolza problem used by Denbow [3].

Certain multistage control problems can be included in this problem
by using techniques of Hestenese [4] and Valentine (6, as has bcen shown
for a simpler case by Boyce and Linnstaeater [2j. The applicability of
multistage variational problems is best illustrated in a recesat paper by
Miner and Andrus [5].

Three imbedding theorems, a multiplier rule, anu analogues of the
Weierstrass and Clebsch conuitions are siven. The first two imbedding
theorems ignore tne end and intermeuiate conditions and consider compar-
isor arcs satistying only the diiferential constraints. The necessary
conditions given reduce to those for the Bolza problem whenever the

problem degenerates to one stage.
FORMULATION CF Tdi PROBLEM

The problem is to find in a class of admissible arcs
yi(x); X, < Xy < vee < xp; X € Exo, xp;; i=1, 2, «vey n;
satisfying uifferential equations of constraint
a
‘P'J(X'Y»y')=05b=l, 2, ....ma<n;a=l. 2y eeey Pi
X € [xa -1 xa];
and end and intermeaiate point conaitions

3, D xqu wee X 500 vy vy ey yOg ) v = 05

B=1, 2y esey §<(2n+1)p + 15

12




MULTISTAGE PROBLEM OF BOLZA

one which minimizes a sum of the form

X

P a
T o= g yeeesx o 7(x ), y(xT), 7 (x3), caey(x )5 + .[ £2(x,y,y")ax.
o p 0”71 1 P 1 % '

as a=1

In the above statement and hereafter, y denotes the set (yl.....yn),
and primes indicate differentiation with respect to x. Reguire yi(x) to
- i Al
be continuous for x € [xo. pr (xl, X5y sees xp-l) and yi(x) to be
piecewise continuous for x € [xo, xp], where i =1, 2, sesy n. The

finite non-decreasing set of points (xo. Xys eees xp) will be called a

set of partition or staging points. The xo, X. coey xp are not fixed

10
but are to be determined by the minimization requirement. ‘The left and
right limits of ¥ and y; at points of discontinuity are assumed to be
defined and finite. Variables occuring as subscripts denote partial
derivatives and repeated indices in a product indicate summation. Let R
be an open connected set of 2n + 1 dimensional (x, Yy, y' ) space with

wt. * having continuous third order partial derivatives in X.
Furthermore, let the matrix !zwgy!H have rank ma in R, Let S be an
open set of 2np + p + 1 dimensionzl

CRE RPN RN C R NN C R BETC PR TC IR CMITI [ ON

space, with Ju. g having continuous third order partial derivatives in
S. Moreover, require the matrix

vee J

vee d ‘
" uy(xp)h

na J J J -y J +
ll wx uxy x5 wy(x)) “uy(x)) Twy(x))
to have rank g in S.

A set (X, ¥, ¥y') is an admissible set if it is contained in R. An

aamissible subarc Ca is a set of functions (yl. Yoo eees yn).

x e [x 1 xa] with (x, y, y') an admissible set and such that Y is
continuous and yi is piccewise continucus on [xa 1 xa} for eacn

13



MULTISTAGE PROBLEM OF BOLZA

i, i =1, 2,¢..yn. An admissible arc C is a partition set (xo,xl,....xp)
together with a set of admissible subarcs Ca, a=1, 2, +sey Py Such

- +
that the set (xo, esey xp, y(xo), y(xl), y(xl), ceey y(xp)) € S. On

each admissible arc, wg, fa. Jy 8y Ju are assumed to be defined.
ADMISSIBLE FAMILIZS AND VARIATIONS

Suppose there exists an admissible arc E satisfying wE:.ﬂL=O. It
there are no other arcs satisfying wg=1ﬂ1=0 with which to compare E
then the problem is trivial. 1In order to establish that the problem is
not trivial, we will give conditions that an admissible arc E can be
imbedded in a family of comparison arcs. This will be the content of
Theorems 1, 2, and 4. Theorem 4 gives conditions that guarantee other

arcs in a neighborhood of E that satisfy ¢ =0 and Ju'=0 while Theorems

a

8
1l and 2 guarantee other arcs near E satisfying only w;==0. First, we
need the following definitions, the first two being essentially the
same as are given in Bliss and the third one is a multistage extension
of the definition of admissible family given in Bliss [1, 194-195].
A one-parameter family of arcs yi(x. b); x' < x < x", 'b I < €; is an
elementary family if and only if yi(x. b) exist and yi(x, b) have con-
tinuous first derivatives with respect to b in a neighborhood of points
(x, b) containing x' < x <x", |b | < e. Two elementary families are
said to be adjacent if and only if they are defined on adjacent intervals

and are continuous across the comnon end point. These definitions hold

between partition points but not necessarily across partition points. A

family of arcs will be called an admissible family if and only if yi(x.b)
exist for xo(b) <x< xp(b),[ b | <e; xo(b), xl(b), cees xp(b) have

continuous first derivatives with respect to b in the region [b I < €;

14




MULTISTAGE PROBLEM OF BOLZA

for each a there is a finite sequence of intervals x', ¥3, x",x'""],
. [x(k-l). x(k)] for k depending on a such that x'<x.a 1(b) < x" and
(k-1) k . e
x < xa(b) < x( ); yi(x, b) for x € [xa-l’ xa] is a part of a finite

sequence of adjacent elementary families belonging to the sequence of

intervals.

The notation to be used for differentials of an admissible family

is as follows:

dx, = %50 1= X1 ppd03

1 = v 2
yidx + éyi where byi = yibdb and ¥i = Vg

db, dx dby eey X = X

dyi
The set of variations of the family along the arc E is the set
For Fyr ocemr 1, (x) defined by

dx

. = pr(o) db = }pdb;

xob(O) db = _}odb’ eeey dxp

by, yib(x, 0) db = ni(x) db.

The \§°, _;l' ceevy _Fp are constants and the ni(x) are continuous and
have piecewise continuous derivatives between partition points of E.
Every set fo' «fl' veey ,ﬁp' ni(x) with these properties is called a

set of admissible variations along E.

If we require the arcs of an admissible family to satisfy mz = 0,
then the variations ni(x) along E contained in the family for b = 0.

satisfy

a a a

(xy my 0') =@y M+ @y =0

where the arguments of ¢ and ¢, are (x, y(x, 0), y'(x, 0))
BY; 21

belonging to E. The equations @; = 0 are called the equations of

variation along E. In these equations repeated subscripts indicate

15



MULTISTAGE PROBLEM OF BOLZA

suzmation. If E is specified then the coefficients of L and ni are
fixed and independent of any family.

The equations of variation on & of the end and intermediate point

conditions will be given by

“i(xo) + Ju

,J}l = Jpxo §o + e + d

+ J -y no(x]) +
wxy fp uyi(xo) yi(xl) 171

+
J +y (X)) + eee + 4 n,(x_)
by (x) i1 uyi(xp) i%p
where the arguments of the coefficients of the variations are the end

and intermediate values of B&.
IMBEDDING THuOREMS

de can now state the first imbedding theorem. The proof of this
theorem is a specialization of the proof of Theorem 2 and for this
reason it iz omitted.
Theorem 1. If an aduissible arc £ satisfies the equation w: = ¢, and
if §°, ‘}1, ey ;p’ ni(x) is a set of admissible variations
satisfying the equations of variation § Z = 0 on &, then there is a
one-parameter admissible family yi(x, b) of arcs containing E, for the
parameter value b = 0, satisfying the equations wg = 0, and having the
set For Fqr eee .§p’ qi(x) as the variations of the family along E.

The extension of this theorem to an s-parameter family is the
content of the following theorem.,
Theorem 2., If an admissible arc E satisfies the equations wz = 0 and
if oo -flc' cees jpc' qio(x) y (0=1, 2, .e., 8) are s sets of

admissible variations satisfying the equations of variation é; =0

16



MULTISTAGE PROBLEM OF BOLZA

along E, then there is an admissible s-parameter family yi(x'bl'bz""bs)
of arcs containing E for the parameter values b =0 (0= 1, 2, eeey 8)y
satisfying the equations wg = 0, and having for each ¢ = 1, ..., 8 the
set §oc’ 510' ceey ~;pd’ nio(x) as the variations of the family
along E with respect to the parameter ba'
Proof. Let E be an admissible arc satisfying wz = 0, and let

foo® $ 1g® *** .;pc' “ic(x) s (6=1, 2, «vey 8) be 5 sets of
admissible variations satisfying the equations of variations @; =0
along E. Consider any arbitrary non-degenerate stage a with associated
partition interval [xa-l’ xa]. Extend the system of equations wg (x,7,¥" )=
0 by introducing new equations zY = ¢:, (y = m o+ 1, +esy n), where the
functions w? (x,y,y') are chosen so as to have continuous partial
derivatives of at least third order in a neighborhood of the values
(x,¥,¥y' ) belonging to £ and such that l¢:yf| £ O along B2,
Y =1y, 2y eeey ma. ma+l, eeey N. The zY ar: new variables, and B is
the subarc of E associated with the a stage. The equations w: = O,
¢$ = zY determine functions zY(x) belonging to E® when yi(x) defining
E® are substituted in these equations. The zY(x) are continuous except
possibly at corners of . The equations of variations are

a a
§B=O’ ‘}Y:fY

where the functions of j; are variations of zY associated with the
subarc E* and the variations . The J; are dependent on ny and n{.
50 'fac corresponds to Mg O = 1, 24 eeey 8. Furthermore, for each
d, ‘fic(x) is continuous except possibly at corners of E or

discontinuities of q;a(x).

17



MULTISTAGE PROBLEM OF BOLZA

The extended system of differential equations has solutions

t
i

¥ = Mi(x' Y, z) with Mi having continuous partial derivatives of at
least third order in a neighborhood of the values (x, y, z) belonging
to Ea, since wg, ¢: have continuous third order partials. Let x' be
the first value of x following X1 defining a corner of B ora
discontinuity of n;U(x). or let x' = X, if there are no corners on E°
or discontinuities in n;q(x). The functions ZY' ’f}o as defined on
[xa-l’ x'] can be extended so that they are continuous on a slightly
larger interval. The right members of the equations

y; = M (% ¥y zY(x) + by :J"Yd(x))

are continuous in x, yl, TETER A bl, ceny bS and have continuous

third partial derivatives with respect to the variables yl""'yn’bl'

ceny bs in a neighborhood of the values x, Yys sees Yp» bl=0,..., bs=0
: . 8 X X

belonging to E; where E; is the subarc of E~ associated with

[x

a1’ x'J. Solutions

y; = Y (x, Xy Yy Bly eees bs)
exist for initial point (X, ;1, esey ;n) with Yi’ Y; continuous and
having continuous partial derivatives of at least third order with
respect to the arguments Yy bc in a neighborhood of the sets
(%, X, ;i’ ba) belonging to E?.
i The functions
y. =Y. [x, x y(x+)+bn (x+)b]=y(xb)
i7" Ta=l? YitTa-l g'ic "a=1"" "o it Y
define an elementary family satisfying the equations wz = 0 on an
interval including [xa_l, x'J.

‘ The functions yi(x, bc) have at x, the initial values

-1

18



MULTISTAGE PROBLEM OF BOLZA

+ + +
VACHETILI LR AE NETE SIS AC RIS P C MR

+ +
BRSSP IPCNERE

X the initial values

Furthermore, Yip (x, 0) along Ei have at x a1
o

+ e a _ a _
nia(xa-l) and yi(x, bu) satisfies ? = 0, ¢Y zY(x) + bo _fYo(x).
Thus along Ei, Yip (x, O) = nio(x) because of the uniqueness of

o

).

solutions with initial values n, (x*
ic Ta-1l
This determines an s-parameter elementary family on the interval
' : : a _ . - a
[xa-l’ x'] satisfying ¢E 0 and having yibo(x, 0) nic(x) along .
Let x" be the next value of x following x' on [xa-l' xa] defining a
corner of £2 or a discontinuity of “io(X)’ or x if B has no other
corners and n;o(x) have no other discontinuities. Repeating the
preceding arguments produces an s-parameter elementary family on
{x', x"] which is adjacent to the elementary family on [xa-l' x'] and
satisfying ¢ = C with y.. (x, 0) = 1, (x) on &5 (subarc for [¥, x'1).
B 1bo io 2
Continuing this process for a finite number of times gives a finite
sequence of adjacent s-parameter elementary families which together
give an s-parameter family of arcs in R satisfying the properties of
the theorem for tae a stage with
*Xg1(0g) = Xa-1 * % Fa-io’ xa(ba) =%+ b ~§ac'
By identifying the parameters of each stage with those of adjacent

stages, an s-parameter family satisfying the requirements of the theorem

is obtained.
TH& FIRST VARIATION

Let an admissible arc E be imbedded in a one-parameter family

19
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yi(x, b) with E determined by 'Yi(" 0). Hvaluate J along the fawily so

that J is a function of the parameter b as follows:

303 = glx (Bhxy (0w v 0y (B), 3, (i, (03,0) 3, (] (0} 0), 1y, (x (6),0)]

P x, (o)
+ Z [ £ (x, y(x, b), y'(x, b))dx.
a=l xa_l(b)

Taking the differential of J, we have

x
P p
a a
+ Z /;{ (f 5'1i + fy.' 5_{;)dx.

dJ = dg + Z r2ax .
a=1 by a=1 -1 ¥y i

a

A
The first variation of J along E is 3 where dJ = Jdb with dJ evaluated

along E. ZExplicitly,

J(f, ) =8+ 3 £°F
a=1

a X
p a a & 1]
+ Zf (fy.qi+fy'.“i)dx
a=1 = x 1 *
a=-1

where the arguments of fa, f:a{ ) fa, are those determining Z and
i i

2 B fot &, fqtoeee# gxp fp* By, (x,) FACRE AR NCWN

- - + +
syi(xi) [y;(xl) Firm Gl g-"i(xi) [yi(xl) jl + 03 ()]

+

-1 N
+ oees + gy.(x ) [yi(xp) jp + qi(xp)].
i p
Define F* as follows:
Fa("sl'qy'qfl): Aofa"‘)

a
[+ (p(l

. X 5 a .
with ;[O a constant, ;‘o. a function of x for each o, and ¢, are functions

a a . . .
[ ‘PY described earlier. Since
=

, é,« A, ( ‘%Y- 1) =0,

©

20




MULTISTAGE PROBLEM OF BOLZA

it can be added to the integrand of 103 without changing the integrand’s
value. Thus

a X

5 g3, o [ R - 7
AJCF o) = A8 + %: It f +;j [yni+ y'.“i"ly Y].dx'
a=l a= i i
a-1 X
a-1

To prove the multiplier rule, we need the following lemma.
Lemma 1. Let x ¢ [xa—l’ xa] and x £ X, - If Ao' c; (L =1, 2ye0e4n)
are arbitrarily selected constants then there are multipliers )a(x),

determined uniquely by
Fa x FJB
= dx + ¢
1 *
i ./”x Y3 i
a-1

which are continuous except possibly at corners of .
Proof. Following procedures of Bliss for the Bolza problem, define

v, = Fa' = 1 2 + 2 wa e
1 Yy ° V3 @ ayi

Now consider
and

Further notice that the first system of equations can be solved for
)a(x) in terms of Jo and vi(x). Substituting these in the system of
differential equations pives

dvi/dx =AYt A B

ia o i°

The coefficients Aia' Bi are continuous functions of x between corners
-y

of &7, The existence of continuous (between corners) solutions vi(x)

of this system with initial conditions vi(xa_l) =c; is equivalent to
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findiny: continuous functions Ai(x) (between corners) for the integral
equations of the lemma. The system

dvi/dx = AL Vot Ay Bi' vi(x

ia ) =¢c

a-1 i
is a linear first order systew of differentisl ecuations. ILet X' be the
first corner of E* following xa-l' The initial condition then for tne
solution between corners defined by x' ana x" is simply vi(x').
Continuing this it is clear that the system has continuous solutions
vi(x) (between corners) and hence there are continuous solutions jJ (x)
(between corners) determined by the integral equations of tae lemma.
The uniqueness of solutions to tne system of uitferential equations
through a fixed point guarantees the uniqueness of the multivpliers
}a(x). The set Ao' vi(x), and consequently th: set Ao' ja(x), do
not vanish simultaneously at a point unless they are all identically
Zero.

fle geta reduced form for the first variation by using integration
by varts and the integral equations of this lemna. Hence, for all
admissible variations fo fl' sy .fp’ ni(x) satisfying the

equations %E = 0, we have

a a
P p
J(§, 1) =3 fszl AR+ DR o, I
° % am1 a-1 % a1l Y1t laa
p
'Zf Rvrfwr ax.
a=1l x
a-1

MULTIPLIZR RULS

We now proceed to state and prove a multiplier rule, or first

necessary condition.
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Theorem 3. An admissible arc E, defined on an interval [xo, xp] is
said to satisfy the multiplier rule if there exist constants 20' ey
not all zero, and a set of functions

Fa(x’ Yo ¥ a2) = Aofa + AB(x) ¢E, a =1y seey Py

with multipliers )B(x) continuous on [xo, xp] except possibly at

partition points and corners of E, such that the equations

x
a a a
Fa, -v/“x F . dx + cjy ¢y = 0, x ¢ [xa-l’ xa],

v
* a~1

are satisfied on E and the equations

P
;§jj{ra - F;; y;} dx
a=1

a a
a

D
[}
[
o
1
—

-1

+ A, dg+e dJ =0, J =0

hold for end and intermediate points of E for every choice of differentials

dxo, dxl.

E satisfying the multiplier rule the multipliers Ao’ A.(x) do not
P

- +
veey dxp, dyi(xo), dyi(xi), dyi(xl). eens dyi(xp). For an arc

vanish simultaneously at any point of [xo, xp], and right and left limits
are defined at partition points and corners of E. Every minimizing arc
E must satisfy the multiplier rule.
Proof. let E be a minimizing arc for this problem. Let for* F1vt
ceey ,F s M. (x) be g + 1 sets of admissivle variations all of which

pT it
satisfy the equations of variations %E = Q along By 7 =0y 1y eeey Qo
By Theorem 2, there is a (q + 1) - parameter admissible ramily of arcs

¥ (x, bo, bl, ooy bq)

fos _ s e fod a _ ) R
containing E for bT = 0, satisfying wu = 0, and having fo1' ,fli' ceey
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» 0, _(x) as its variations with respect to b_ along zZ., The
Jpt it T
functions J, Ju become functions of tne parameters when the functions

defining the (q + 1) - aduissible fanily are substituted in them. The

equations
J(bo' bl' ceey bq) = J(0y «eey 0) + u,
Ju(bo' bl, ooy bq) =0
have the solution b0 = bl = eee = bq = u = 0 corresponding to the

minimizing arc =. wWe wish to show the determinant

aJ .on 3J
db 3b
o q
9J ad
¥ ves — 1
b 2b
[} Qq

1T e T bq =u = 0. <ruppose the contrary, then

from existence theorems for implicit functions the above equations have

is zero for bo =Db

unique solutions b1 (u) continuous near u = 0 and havinz initial values
bi(O) = 0. But for negative values of u, the value of J on § is larger
than the value of J along soue admissible arc corresponaing to bt(u)
(for negative u). ihis contradicts the fact that J takes on its

minimum value along 3. Hence the determinant is zero for all choices

of tihe variations an. takes tue form
A( ) A
J Feo® Mo ot J( fcq' Tliq)

A A
Ju( fco' nio) b Jp( fcq' T“iq)
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wnere ¢ = 0, 1, +v., pand i =1, ooy, nand p =1, ..o, Q.

Ve notice that this determinant is q + 1 by 9 + 1. Let t < g + 1
be the naximum rank attainable for this determinant for sets of
admissible variations fot' }‘11, sesy jpt' My, (x) satisfying
éat = 0 on ., Furtnermore, let this set of aumissible variations be
a set for which tnis rank is attained. 'thus, there exist constants

Ay eu (not all zero) satisfyinz the following system of equations:

A A
"OJ( }co' Y;io) + eu Ju( J&co' Tl:'Lc.) =0,

JC g ) hi¢ )
Ao -"cq' niq vey N fcq' “iq
ow, with tinese constants the ejuation

AOJ( Fer "i) re, Ju( for ni) =0

0
(&)
.

must be satisiied for every set of admissible variations fo' ;1, csey
fp' 'qi(x;) satisfying the equations of variation §: = O along 5. 1If
this were not the case tnen there would exist a set of admissible

variations /e”;. ceey f‘;' n’;(x) such that
)03‘( _;;. nl) re, 311( fc’ n;.t) £ 0.
de notice then taat the g + 1 by 9 + 2 matrix
13€ foor ni) +ov € fogr myg) 3C g% a0 H
|
l' 311( Feo’ “io) .ee 3‘).( Feq’ “iq) 3}1( f::' n’;)“
has rank t + 1 since otherwise

"oj( j‘*' )+ e, Su( ;*' ) = 0.
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But this would contradict t being the maximum rank.

Substituting the simplified version ;\03 given just pefore the

statement of the multiplier rule in 103 + euj‘u = 0, we get
P & D #
a A a
"o fo * A°5+ZFy|. "i
a=1 a=]1 i
a-1 a=-1

The expressions not under the integrals are linear in fo' J£1.

- + s .
veey fp' ni(xo), ni(xl), 'qi(xl). ceey ni(xp). Consider the coefficients

of qi(xo) , namely

1
xogyi(xo) - ij.. (xo.y(xo),y'(xo), A(xo)) ve, Juyi(xo)'

and recall Lemma 1. Since we can select c} = Flv (x_4y(x ),y (x )y, A(x )
i y; o o o °

arbitrarily, we can make this coefficient vanish by simply setting

1

€i == A, 8

i 3imilar remarks can be made concerning

+e d .
yi(xo) B uyi(xo) . .
. < 2 \ + L+
the vanishing of the coefficients of r,i(xl,, ni(xz), "i()‘;)‘ vess qi(xp_ ).
The remaining expressions must vanish for every arbitrarily selected set

;o’ Fpr ocee £ ni(x;), ni(x;). ey qi(x;_l). ni(xP). jY (x).

By choosing £ = ... = jp = qi(xz) = e = qi(xp) = 0 we have
P

X
a
dx = O.

Now the AY' Y = la +1, <.y n pust vanish identically since the

‘fY can be arbitrarily selected. Similar choosing will show that

the coefficients of fo’ v e o ni(x;), 'qi(xg), cony ni(xp)
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vanish. For wg = 0,'Fa = 2 £* and we can summarize by saying that
s - +
the coefficients of ,FO' XTI ni(xo)' ni(xl)' 1, (%) ooy

ni(xp) vanish in the following equation:

)4
2 o, n. J =0,
+ A8 + ;g; y; ng +ed,
a=1

5. 7F

Since dx = ‘fodb, ooy dxp = §p db, dyi(xo) = yi(xo)dxo + ni(xo)db,

a
a-1

., - - + .+ +
yi(xl)dx1 + qi(xl)db. dyi(xl) = yl(xl)dx1 + qi(xl)db, ceey

dyi(xi)
dy.(x = y.(x_)ax_+ q,(x )db, this last equation can be transformed
y;¢ p) yl(p) p * Ny (xp)dbs !

to the form given in the theorem. This together with Lemuwa 1 completes

the proof of the multiplier rule.
COROLLARIES TO MULTIPLIER RULE

There are three irsnportant corollaries to this tneorem.,
Corollary l. At each point between partition points of an admissible

arc £ satisfying

a 5 a
P¢ 0, F;: F;. dx + €5 X € [xa-l' xaL
i i
x
a=1

the functious F?- have forward and backward derivatives, equal except
i
at corner points and such that
dF;./dx =F .

i Yi

Corollary 2. At each corner between partition points of an admissible

arc I satisfying the equations in the hypothesis of Corollary 1,

tane functions F;- have defined left and right limits which are equal.

i
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Corollary 3. On each sub-arc between partition points of an admissible
arc & satisfying the equations in the hypothesis of Corollary 1, on

which the functions yi(x) defining % have continuous derivatives and

the determinant

a .
1F§iy'k ‘Pﬁ'y; (1, kK =1, coey n)
R* = ‘
a
2 .
fpﬁy;{ ) By B' = 1y eeey m)

is different from zero, the functions yi(x), )ﬁ(x) belonging to E
have continuous derivatives of at least the first order with respect to

Xe

Corollaries 1 and 2 follow directly from the equations in the

hypotheses.

Proof of Corollary 3. Let X be a value defining a point interior to
some sub-arc cf theastage with tne functions yi(x) defining £ having
continuous derivatives on tuis subarc and Rj £ 0O at X. The equations
X
F;t (x,y(x), ulx), w(x)) = d/h F;' (%, y(x),y'(x), A(x)]dx + c?,
i i

*a-1

w; (x, y(x), u(x)) =0, xe¢ [xa-l’ xa],
have tne solutions ui(x) = yi(x). uﬁ(x) = RD(X) along m. Wotice
the R: is the functional determinant of the left members of these
equations with respect to ui, uF and Rﬁ # 0 at

x, ¥ x), A(X)) = (X, u(X), u(x)). Taeorems on implicit functions

say that solutions u, = y;(x), R, o= )ﬁ(x) will have continuous
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derivatives with respect to x near X of as many orders as the functions
in the equations, in this case wg, F;!, have with respect to x, u, p.

i
This guarantees then that we have continuous derivatives of y;(x), Aﬁ(x)

with respect to x of at least first order.
wXTREMALS, NORMAL AND ABNORMAL ARCS

A stage extremal for the a stage is an admissible subarc yi(x)
without corners and with multipliers
Ao =1, Ab(x), B =1, 2y seey Wy X € [xa—l' xa],

for which y;(x), Ap(x) have continuous derivatives on the interval

[xa—l' xa] and satisfy equations wz = O and df;;/ﬁx = F?l. An extremal
is an admissible arc which on each stage is a stage extremal. An a
stage extremal is called non-singular provided RZ # 0 along it. An
extremal is called non-singular if each of its stage extremals is
non-singular.

Let M be the class of admissible arcs satisfying qﬂ = 0, Ju = 0.

An arc & € M is suid to have abnormality of order r if it satisfies

Theorem 3 (the multiplier rule) with r and only r linearly independent
sets of multipliers o{ the form )OF = 0, )39 (x)y P=1ly 2y eeey T.
If r = 0, the arc & is said to be normal. A set of multipliers Jo'
2ﬁ(x) with A ¢ O will be an abnormal set of multipliers. If a
normal arc E nas a set of multipliers, then by dividing by a suitable
constant these will have the form )o =1, Aﬁ(x). The set of

multipliers with Ao = 1 for a normal arc is unique, since if it had

more than one they could be put in the form having Ay = 1, and the
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difference of two such sets of multipliers would be a set of multipliers

with A = O and hence abnormal.
A THIRD IMBEDDING THZOREM

We can now prove for multistage problems the theorem given by
Bliss for one-stage problems [1, 214]. The proof again follows the
pattern of Bliss' proof.

Theorem 4. If an arc E ¢ M is normal, then there exists an admissible
one-parameter family of arcs in M which includes E for parameter value
b = O and which has in every neighborhood of E arcs of M not identical
with E.

Proof. By Theorem 2, the normal arc E may be imbedded in an admissible
(q + 1) - parameter family of arcs xc(bo' bl’ ceey bq), yi(x'b1o'bl'
veeny bq) satisfying only the differential equations w; = 0.

Consider the matrix

3¢ feor n;.) cee J( feq’ "iq)

A A

Jv.( Foot “io) Ju( fcq’ 'niq)I
and note that the maximum rank attainable for the last q rows must be
q. For, if it were less than q, then there would be a set of constants

% = 0 N (not all zero) satisfying the equation
X J ‘fc' ny) o+ eu Ju( fe' qi) =0
for every set of admissible variations <}c’ ni(x) and determining a

set of multipliers Ao = 0 JB(x) (not vanishing simultaneously) for

E. This contradicts E being normal. Now suppose that the variations
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, n.. have been chosen so that the determinant of tae first q
Sfer® Min
columns of the last q rows of the above matrix is different from zero,
and let these be the variations of thne family x, (bo. ceny bq),
yi(x, bo' ceny bq). Substitute into the functions Ju. replace bq by b,
and consider the equations
Ju (bo’ bl, ooy bq-l' b) = 0.

These equations have the solution bo = b1 = ees = b =b=0 at

which the determinant

2J 23 Py
& B .
35 25, By

is different from zero. From implicit function theorems they have
solutions bf = Bf(b). f =0, 1, eosy q-1, with continuous derivatives
near b = O and with initial values Bf(O) = 0. Jthe admissible one-
parameter family of arcs is obtained from yi(x, bo' bl' ceny bq) by
replacing bq by b and bf by Bf(b). This family contains E for b = O,
and when b is sufficiently small the arcs of this family belong to M.
Replace the set of variations fcq' niq(x) by the set £, ni(x).
then the variations along E of the one-parameter fawmily are given by
;%fB}(O) L nif(x) B}(O) + 1,00,
where the primes indicate differentiation with respect to b. If the
n variations
1y £(%) BL(0) + my(x)
are not all identically zero, then the family will contain arcs not

identical with E. Now when the functions LA have been chosen to

secure rank g for the matrix
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5 ) i« ||
“ Ju Ffeo' Mo vee n fc q-1" "i q-1
the variations “i can always be selected linearly independent of them,
thereby insuring that the variations
t

nif(x) Bf(O) + ni(x)
are not identically zero. This selection can be made by determining
the functions fif(x) corresponuing to the variations qif(x) by

means of the equations

%g=o, }:: fY(x), 7=ma+1. ceey N,

and then selecting fi(x) linearly independent of j:;.f (f = 041,000y
q-1) and finally choosing for the variations qi(x) solutions of the

equations

@g (x, n, %') =0, %: (x, my 7') = ./Y(x),

with the functions fi(x) substituted in tnese equations.
Corollary 4. If ot qi(x) is a set of admissible variations
satisfying the equations of variation {)E = 0, 3“ = 0 along a normal
arc E € M, then the one-parameter family of arcs in M imbedding E of
theorem 4 can be so chosen that it has the set For ni(x) as its
variations along E.
Proof. The one~parameter family constructed in Theorem 4 will suffice
for this corollary provided B}(O) appearing in the variations, all
vanish. Consider the equations

Ju(Bt(b)' b) =0, 1 =1, «euy Qe

If we differentiate these equations, we have at b = O the equations
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Sy  Fepr nyg) BRO) + 3“1 (f,0m) =0,
Since Jor ni(x) satisfy the equations 5; = 0, the above equation
reduces to

31: ( fegr Nyq) BR(O) = 0.
Now the determinant

Iﬁu ( fcf' "if)l
has rank q and hence is different from zero. Hence the B}(O) are zero.
We can now state another corollary to Theorem 4, and, because it

is concerned with what happens on sub-arcs between corners of E, it is
precisely the same result that Bliss obtained for the Bolza problem
[1, 215]. we state it here without proof.
Corollary 5. Each of the sequence of elementary families which together
form the one-parameter family of arcs in M described in Theorem 4 and
Corollary 4, is defined by functions

¥ (x, b), x' <x <x", |b |< €,
for which the derivatives Yip? y;b exist and are continuous in a
neighborhood of values (x, b) satisfying the conditions x' <x < ',
b = 0. If the imbedded arc & is an extremal, so that the functions
yi(x) defining it have continuous second derivatives, then the

derivatives y, )' also exist at the values (x, b)

\}
ibb® Yivn' ipo
N : ] " _ ' _ 1
satisfying X' < x <x", b = 0, and Yipe = (yibb) + On each elementary

family the following differentials exist and satisfy the equations

- - - \ ]
dxo =X dby eeey dxp = pr db..dyi =y db + byi.

R R+ t 5.2 ' 2
d y; =y d'x + ¥y dx~ + Zéyi dx + & yye
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WETERSTRASS CONDITION

e are now able to state and prove an analogue of the necessary
condition of Jeierstrass.
Theorem 5. An admissible arc E satisfying the equations wg = 0 and the
multiplier rule, with multipliers )o =1, Rp(x). is said to satisfy
this analogue of the necessary condition of Weierstrass with these
multipliers if the condition

WXy Jo T r AL ¥) = Fx, 5, ¥y 2 ) = Flx, o ¥4 A )

ERCARS ) F‘;l (x, ¥, 992 ) 20

is valid at every element (x, y, ¥ , A ) of E, except possibly at
partition points of E, for all admissible sets (x, y, ¥') # (x, ¥, ¥'")
satisfying the equations wg = 0. Every normal minimizing arc E for this
problem must satisfy this condition.

We need the following lemma in order to prove Theorem 5.
Lemma 2. Let E be a normal minimizing arc. Then there is a set of
admissible variations £ ., figceeces _;pf. nip(x)s £ = 0415000y a1,

satisfying the equations of variation §; = 0 along E such that

Ju (_;cf’ qif)l # 0.

Proof of Lemma 2. Suppose that for every set of q admissible variations

satisfying ég = O the determinant ‘3u(f. n) I = 0, We consider the
equation )bf + eufu = O which must be satisfied by every set of
admissible variations. The condition that ISu |= 0 for a set of q ad-~
missible variations implies that A°==0, contradicting the normality

of E.
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Eroof of Theorem 5. Let a be arbitrary and consider the stage

associated with the interval [xa-l’ an' As in the Bolza problem

{1, 2201, let t be an arbitrary point between corners of E°. Let Yi.
i=1, 2, «vey n, be a set of values such that the element

[xt, y(xt), Y'] is admissible and satisfies the equations (p; = 0.
This system of differential equations can be enlarged as in the proof
of Theorem 2 so that the continuity properties described there hold
£O

at [xt, y(xt), Y' ] as well as on 2. The enlarged systenm defines a

near the element [xt, y(xt), Y' ] as well as near E° with '¢2y!
i

set of functions zY(x) corresponding to the functions yi(x) defining
E%, and a set of constants ZY associated with the set [xt, y(xt). Y'J.
The equations of variation define functions fyo(x)' G =1, ceey B,
corresponding to each of the sets of admissible variations fco’ nia(x)

of Lemma 2. As in the Bolza problem, we can infer the existence of

three families of admissible arcs

¥;(xy b), X, - 0 <x<xy, o I< e,

Yi(x.b), X, Sx<x e, |b|<s, |e|<s,

yi(x,b,e) xt+e_<_x<xa+b, o j< e, !e|<e,
satisfying differential equations

yi=M (x, 5, 2(x) +b_ /) X -5 <x<x

i i g “o’? a-1 =" ="

y{:Mi(x,y,z), xt5x5xt+e.

L.

yi-Mi(x,y,z(x)+b°f°), xt+e5x§xa+t>

and initial conditions
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i Oepye D) =y () by Oy )

Yi (xt' b) = yi (xt' b)v

¥ (xt +e, b, e) = Y, (xt + e, b).

The system of differential equations is equivalent to

a a
@5 =0y @ =20 +b om0y x, )-8 <x<x,
a a
vy = 0, @y = Zy x, Sx<x, o+ e,
wa =0 wa =Z (x) +b_1n. (x) x, +e<x<x +6b
B ' Y 'y o Mg t = a
with Y; = Mi(xt, y(xt), 7). For values e > O the three families form

a single admissible s-parameter family of arcs consisting of a finite
sequence of adjacent elementary famuilies. 7The functions defining
these elementary families and their derivatives with respect to x have
continuous partial derivatives with respect to the parameters b and e.
Continuity with respect to b follows from the arguments of Theorem 2
and for e from well-known existence theorems in differentisl equations
1, 278].

If b = e = O then the first and third families reduce to the
functions yi(x) defining the arc E*. ‘The variations along E? with
respect to bc of the first and third families satisfy the diiferential
equations ot variation (for the enlarged system) with the functions

j;o(x) corresponding to the variations nic(x). If ni(x) denotes the
variations along the arc E? of the first and third families with re-

spect to e, then they satisfy the equations

a-
80

and the relations
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ni(x)‘io, X -b6<x<x

a-1 t’
' - v!
yi(xt) + ni(xt) = Yi.'
Cn each of the other stages one gets an s-parameter family y(x, b)
of comparison arcs and by matching up parameters these stage-wise

comparison arcs piece together a family of comparison arcs for the

problem under consideration. Furthermore, when

xc(b) =X, + b0 fco
are used to define staging points and substituted in the end and inter-
mediate point constraints Ju, then the functions J,‘1 become functions
Jll(b' e) of the parameters b, e. At the values (b, e) = (0, O) these
functions h_ave, as in the case of the Bolza problem, derivatives

R ad

—;Sﬁ = Ju (fc’ Tlc). ?E = Ju ($, n).

The equations Jp(b, e) = O have initial solutions (b, e) = (0, 0) at

which functional determinant

ad
abc

= ~Jp. (f o’ 1]c)

is different from zero. Only the second subscript on }o' L is being
used, actually these should read jcc' L Now the equations

Ju(b, e) = O have solutions bc = Bc(e) which vanish at e = 0 and have
continuous derivatives near e = 0. These derivatives satisfy the
equations

3, C Foor My BLO) + J, ( gy =0

at e = 0. By replacing the parameters bo by bc = Bc(e) in the comparison

arcs and end and intermediate conditions, we get a one-parameter family
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of comparison arcs which contain the minimizing arc E for e = O and
which are admissible for sufficiently small positive values of e.

Now the function J can be written as a function of the parameters
b, e as follows,

J(b,e) =g[xo(b),...,xp(b),y(xo(b),b),...,y(x;(b),b,e),...,y(xp(b).b)]

x, (b) x,_1(0)
1 a-1
+ £ (x,y(x,b),y‘(x.b))dx+...+/ #2871 (x,y(x,b) ¥ (x,b)dx
xo(b) xa_z(b)
X, X, +e
i/r fa(x,y(x.b).y'(x.b))dx + J/r fa(x,Y,T Ydx
*g1(P) Xy
x, (b) x 2® .
+ £2(x,y(x,b,8),y"(x,b,e))dx +/ £24 (%, y(x,0),¥" (x,b))dx
X +e xa(b)
x_(b)
p
+ eee + fp(x,y(x,b),y'(x,b))dx.
xp_l(b)

using precisely the same techniques as are used in the Bolza problem
we find that the derivatives of J at (b, e) = (0, 0) are defined by

3J

bc M euJu ( fcc' T‘io) =0,

3J $ 2 lt
= 1

e o0 (S ) =Wy ¥ A, YD,

where
wﬂ(xv p R y’l A,Y) = Fa(xs Vo Y, A) - Fa(x- Yo ¥ A)

- | ] a t
(Yi yi) Fyi (xy y9 379 A ).

The arcs defined by functions y(x, b, e) for x € [xa-l' xa] are

not admissible for small negative values of e but are admissible for
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small positive values of e, Since J(E) is to be a minimum, as e
increases from zero, the sum J(Bc(e), e) must be non-decreasing. Thus
the derivative at e = O must be non-negative. The derivative of this
sum at e = 0 is given by

Jbo (0, 0) B}(0) + 3, (0, 0).
It follows easily then that ¥ (x, y, y'y A, Y') > O between corners
of E*. One can also see from simple continuity arguments that

WV (x, ¥, 5,A, Y020

at corners of Ea.
CLEBSCH CCNDITION

We follow the analogue of the leierstrass condition by an analogue
of the Clebsch condition.
Theorem 6. An admissible arc E satisfying the equations wz = 0 and the
multiplier rule with multipliers A, = 1, Aﬁ(x) is said to satisfy
this analogue of the necessary condition of Clebsch with these multi-

pliers if the condition

F 'aé (%, ¥o ¥'» A) LI

holds at every element (x, y, y', A ) of &, except possibly at staging
point, for all sets (nl, Ty eeey nn) # (0, Oy veey Q) satisfying the
equations ¢:y! (xy ¥y T3 A ) L 0. Every normal minimizing arc for
tinis problem ;ust satisfy this condition.

Proof. Llet E be a normal minimizing arc for this problem. Let az be

arbitrary and T i=1l, 2, «esy n, be a set of values satisfying the

equations
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a

‘PBy? (xy ¥y .‘{'1 A) Tli =0

i
where the element (x, y, Y’y A ) belongs to E. Now n ~ m further
a

quantities KY are defined by the equations

a e _
“vy; (e 30 Y0 A) My = e

The equations
a a
S (x y=0 (x ) =2 +e¢
wp('y.p ' e, (xy ys p Y L®

have the initial solution (¢, p) and determine a set of solutions
pi(e) with initial values pi(O) = yi. Now the above equations becoume

a _ a .
(pa (x, y, p{€)) = 0, LPY (%, ¥, pe)) = LY + € HY

and differentiating with respect to € and replacing pi(o) by y{ in

notation produces
a

[HO =0 e s

q)a
By Y’

so pi(o) =7, Now sets (x, y, p(e))are interior to R for sufficiently
small €, hence from Theorem 5, we have

‘va(xi ¥s Y0 A, p(e)) 20,
Recall # (X, ¥» ¥'» A » p(&)) = F°(x, ¥, ple), A) = Flx, 7, y1, 2)

- (py(e) - yi) F;i (xy ¥y 3" A ),
1

and note ¥ = 0 at € = O giving a minimum value to 2. Differentiating
with respect to € and evaluating at € = O produces

(E* (o))"

n.Fa' - n.F31 =C
iy, iy,
i i

and (E2(0))" = F*

ooy LT .
g 1K

Clearly, F;'y' LI must be non-negative and this completes the proof.
i‘k
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RELAXED CONTROLS FOR FUNCTIONAL EQUATIONS*

by

J. Warga

1. Introduction. We wish to study a class of variational prob-
lems defined by functional equations and, in particular, by non-
linear integral equations. Special problems of this kind, in-
volving one-dimensional "hereditary” and delay-differential
equations were investigated, among others, by A. Friedman [1],
M. N. Ofuztdreli [2 ], and A. Halanay [3 ] (see also [2 ] and

[3 ] for other references to work on such one-dimensional prob-
lems). Control problems defined by multi-dimensional integral
equations were discussed in a heuristic manner by A. G. Butkovskii
{4]. The "usual" control problems, defined by ordinary differ-
ential eguations, also represent a special case.

Among possible applications of our results, as specialized
to integral equations, we may mention, in particular, nonlinear
control problems defined by partial differential equations that
are equivalent to Uryson integral equations. The methods that we
employ are closely related to those previously developed in [5]

and [6].

*
This research was supported by N.A.S.A. Grant NGR 22-011-020,
Supplement 1.
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As a convenient framework for our study we consider the
following problem: let TA and Q be given spaces, 79 Hausdorff,
W a subset of Q, Em the euclidean m-space, Bl a closed
subset of Em , and F: %}x Q -+ 3 and
c = (cl,..,cm): qéx Q - Em given functions. The "original
problem" consists in determining an "original minimizing
point", that is, a point (y,u) € Y x W that minimizes
cl(y,u) on the set {(y,u) € \éx Wly = Ply,u), cly,u) € Bl};
the "relaxed problem" consists in determining a "relaxed
minimizing point" (y,q) and an “approximate minimizing solution"
{(yi,ui)}‘;=1 , that is, a point (y,q) ¢ Qéx Q that
minimizes cl(y,q) on the set {(y,q) ¢ \é x Qly =
F(y,q), cly,q) ¢ Bl}, and a sequence {(yi’ui)}:=l in
Wé x WU, such that y; = Fly;, u;) and }ig cly; u;) = cly,q).

This formulation is motivated by a typical model of a
control problem: the parameter u describes the control functions
and parameters (that can be chosen from some "admissible”
set W ), the point y describes a motion of the system
consistent with the chosen controls and subject to the "equation
of motion"

(1.1) y = Fly,w),
the relation

(1.2) c(y,u) € Bl
describes the restrictions imposed on the system, and ¢

is the cost functional.

46




RELAXED CONTROLS FOR FUNCTIONAL EQUATIONS

In general, as in the special case of variational
problems defined by ordinary differential equatiors, the original
problem , with controls in U , does not admit a minimizing
solution even if the functions F and c are "nice". We
therefore embed WU in a set Q of "relaxed controls" and
define an appropriate topology on Q in which W 1is a
dense subset of sequentially compact Q and F and ¢ are
continuous when restricted to the set
{ty,q) ¢ lé x 9| y=F{y,@} . This insures, subject
to certain mild assumptions about F and c , the
existence of a relaxed minimizing point (y, a) and of
an approximate minimizing solution. The desired "relaxed”
behavior of the system can be simulated by using an element
of an approximate minimizing solution.

In studying necessary conditions for minimum we
require somewhat different assumptions related to the nature
of Wé as a Banach space, the convexity of Q , the existence
of (Frechet) derivatives Fy and cy , and the
invertibility of I - Fy(y,q) at the relaxed minimizing
point.

We observe, in §§3 and 4, that the usual optimal
control problems defined by ordinary differential equations
belong to the class of problems that we have described; so do the

more general control problems defined by Uryson-type integral
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equations that we discuss in some detail in §8§3,4,6, and 7.

We discuss, in §2 , the following aspect of the
general problem: (1) the existence of a relaxed minimizing
point (y,q) ¢ 15 x Q; (2) the existence of an approximate
minimizing solution; and (3) necessary conditions for a relaxed
minimum,., The corresponding proof is presented in §5 . We
then apply these results in §§3 and 4 (with the proofs in
§86 and 7) to a control problem defined by a Uryson-type
integral equation.

The general results for the Uryson-type relaxed control
problem that we present in §§3 and 4 require rather complicated
assumptions and setting that are introduced with the view
toward generality and possible applications. As a consequence,
the theorems are rather involved and the assumptions complicated.
We therefore present, at first, less general results that have

the advantage of greater simplicity.

1.3. The simplified Uryson-type control problem. Let T and

R be compact subsets of some finite-dimensional euclidean

spaces, dt the Lebesgue measure on T, and (t,1,v,r) - g(t,T,v,r):
T x T X En X R ~ En continuous and such that gi are inde-
pendent of t for i =1,2,..,m < n. We represent by § the class

of regular Borel probability measures on R . The "original problem"
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consists in determining functions y: T + E and p: T + R

that yield the minimum of
iy,p) =yt = 5 glin,y (), 0t At
T

among all couples (y,p) for which y 1is continuous, »p

measurable,

(1.3.1) y(t) = f g(t,1,y(1),p(T))d1 (teT),
T

and

(1.3.2) y* =0 (i=2,...,m).

(Note that yl are constant for i < m since the corresponding
gl are independent of t). The "relaxed problem" consists in
determining a relaxed minimizing solution (y,s), that is,func-

tions y: T > E_ and g: T » S that yield the minimum of
1 1
c'y,0) =y = s dv s gttty , 00 @)
T R

in the class f% of all (y,c) for which y is continuous,

the function 1 + [/ ¢(r)o(dr;1) measurable for all continuous

R
scalar ¢,
(1.3.3) y(t) = é drt é glt,1,y(1),r)0(dr; 1) (t eT),
and
(1.3.4)  y* =0 (i=2,..,m.

49



RELAXED CONTROLS FOR FUNCT!ONAL EQUATIONS

We can state, as a consequence of the results presented in §§3.

and 4, the following theorem:

Theorem 1.3.5. Assume that g and 9y = (agi/avj)(i,j=l,..,n)
exist and are uniformly continuous and bounded on T x T x En * R,
and that the class :% is nonempty. Then there exists a relaxed
minimizing solution (y,0).

If y is the unique continuous solution of the integral
equation (1.3.3) for ¢ = G then there exists a sequence
{Dj}jzl of measurable functions and a sequence {yj}j:l of
continuous functions such that the (yj,pj) satisfy equation
(1.3.1) for 3 = 1,2,... and limy> = §* for i =1,2,..,m.

j—>00
If the linear integral equation

w(t) = J k(t,T)w(T)dT (t e T)
T
has only the trivial solution w(+*) = 0 for
k(t,t) =/ gv(t,r,§(r),r)5(dr;r) (t,teT) then the relaxed
R

minimizing solution (y,0) satisfies the following necessary

condition for minimum:

there exist a nonvanishing X = (k*,..,xm,o,..,O) [ En
s
and a resolvent kernel k* = (k lj)(i,j =1,..,n) of k such
*3 *q
that (t,1) = k lj(t,T) =k lj(r) are independent of t for

i=1, .., m and
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(Weierstrass E-condition or maximum principle)

fdt f o) - g(1,9,y(0),r)o(dr;¥)
T R

Min S (1) * g(t,¥,y(®),r' Ydtr for almost all ¥Ye T,

rER T
where
2t = hr), ..., )
and . m A *3 A
Iy = & Atk lj(r) + A3/ (3 =1,..,n; T e T
i=1

*
(We say, in the present context, that k 1is a resolvent kernel

of k if the equations
w(t) = f k(t,0)w(t)dt + h(t) and w(t) =/ k (t,)h(r)d=
T T

+ h(t) (t ¢ T)

are equivalent for continuous w and h).

The above theorem, which we prove in §8, is much too weak
for our purposes: it does not even apply to control problems

defined by ordinary differential equations. We consider, there-

fore, in §53 and 4, a Uryson-type control problem in a more
general setting: the sets T and R are assumed metric and
compact, the "original controls" p are restricted by the con-
dition

o(t) ¢ R¥(£) (t e T) (where t » Rf(t) CR is given)

and the "relaxed controls" o¢ satisfy analogous restrictions, the
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function g has, as an additional argument, a "control parameter"
b in a metric and compact space B, the condition (yz,..,yn) =0
is replaced by (yl,..,yn) € B1 for a given Bl , the uniform
continuity and boundedness of g and g, are rerlaced by weaker
assumptions, and the class Qé of solutions y of the integral
equation is extended beyond the class of continuous functions.
We then study the existence aspects of the control problem
for integral equations assuming qé to be Ll(T,En); and
we examine necessary conditions for a relaxed minimum assuming
that 1@ is either Lp(T,En) for 1 <p <o or C(T,E_).
Necessary conditions for an original minimum will be discussed
separately along the lines of [6]. We might mention, finally,
that certain more general unilateral and minimax control
problems that have been investigated for ordinary differen-
tial equations [7], [8], [9] extend quite naturally to integral
equations; but we have only partial results so far.

I wish to acknowledge with thanks several stimulating
conversations with J. Frampton.

2. The General Control Problem. Lemmas 2.1 and 2.2 below are

obvious and are stated only to motivate the corresponding state-
ments concerning the Uryson~type control problems and their
proofs (Theorems 3.2 and 3.3). Theorem 2.3, on necessary condi-
tions for minimum, is patterned after [6, Theorem 2.2, p. 644]

and relies ultimately on a construction of McShane [10, pp. 17-18].
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We use the term "derivative" to mean "Frechet derivative"
and the notation hx(xl ,yl), hy(xl ,yl) to represent partial
derivatives. If h is defined for x in a subset [ of
a Banach space ﬂi and y 1in a Banach space 2;,
with values in a Banach space 3 , we say that h has a
derivative h(x,y)(xl'yl) at (xl,yl) relative to

I x H if h ) is a linear operator from

(x,y) X17¥1
X x 74 to 3 such that

lh(xz,yz) - hixy,y,) - h(x’y) (x1,¥7) ((x5,y7,) - (xl,yl))l =

ol|x, - x +y, - yllq) for all x, ¢ I' and

1lx

for all ¥y € qé. The symbol I represents the identity opera-
tor on ’% . If Q is a convex subset of a linear space,
X is any set and h is a function from X x Q to some Banach

space, we write Dh(x,q;q - q) for 1lim é(h(x,a +a(g ~q)) - hix,q)).
o++0

We denote by A the closure of A.

Lemma 2.1 Let % and Q be Hausdorff spaces, Q and

vy = {ye H ly = Fty.q), cly,q) € B, , g € Q} sequentially
compact and F and ¢ continuous when restricted to il x Q.
Then either there exists a point (y,g) that minimizes
cl(y,q) on {(y,q) € Q} x Qly = Fly,q), cly,q) € B}, or

that set is empty.

Lemma 2.2 Let '5 and Q be Hausdorff spaces, U a

53



RELAXED CONTROLS FOR FUNCTIONAL EQUATIONS

dense subset of Q , and (¥, 9) a relaxed minimizing
solution. Assume, furthermore, that Q satisfies the

first axiom of countability and that

(2.2.1) y is the unique solution of the equation

y = Fly, 6)7

(2.2.2) there exists a neighborhood Q of g such
that the equation y = Fly,qg) has at least one

solution Yy for each ge W Q; and

(2.2.3) the set Y, = {y € 1) ly = Fly,q),q ¢ Q)

is sequentially compact and F and c¢ are continuous

| when restriced to iz xQ .

Then there exists an approximate minimizing solution.

! Theorem 2.3. Let 1& be a Banach space, Q a convex
o
subset of a linear space, w® an array with real elements
wlj(i,j =1,...,m) considered as an element of E 5 with
m
a 2 ij m ij S o=
origin O , Q0 ={w” | w J >0, b w3 <1} , and (y,q)
i,j =1

a relaxed minimizing point. Assume, furthermore, that for each fixed
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subset {q.j | i, 4 = 1,...,m} of Q there exists a neighbor-

wl](qi.—q_)) :%XQ-»‘% and
i = J
i, j=1 P

m .
{(y, M » c(y,q + z wlj(qij -q)) = %%~x Q- E are con-
i9 =1

i
hood \_3_ x& of (7, oM in [fx Q such that the functions
- ,
z

(v, o) > Fly,q +

tinuous, have derivatives at (y, 08) (relative to li x Q)
.

and continuous partial derivatives with respect to y on

~ that

Lisx @, andjthe operator I - Fy(§;§) is a linear homeomorphism
of \JQ onto 11. Let Kl be a convex set in some EX’

1 and ¢ = (¢l,...,¢m) : Kl - Bl a continuous mapping

with a derivative at & and such that ¢(E) = cly, g). Then

T e K

either

(DT = uin 4D,
E€K1
or there exist Y > 0 and ) e E such that [x] # 0,

(2.3.1) ¢t
§
(2.3.2) % - Lo, G (T - Fy(i,a))’loF(i,E; qa-q +
Dc(y,q; 9 - @)} > 0 for all q e Q,

and

(2.3.3) 0 &3 = A) ¢, (D) = Min (Y5, - 1) ¢5<E)£ ,
EeKl

where 61 = (1,0,...,0) ¢ Em.

3. Control Problems Defined by Uryson-type Integral Equations.

Existence of Relaxed and Approximate Minimizing Solutions.

Let T, R and B be compact metric spaces. We assume that
a nonnegative, finite, regular, complete, and nonatomic
measure dt is defined on the Lebesgue extension of the

Borel field of sets in T and we consider the corresponding
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product measure dtdt on T X T. The symbol |[M| represents

the measure of M T, fh(t)dt the integral over T, |a,b]

the distance in a metric space, and |a| (or |[a|g) the norm

in a normed linear space E. We represent by Lp(T,;KD

(1 < p < «») the Banach space of measurable functions h from

T to a Banach space ;Zf s;;gg the norm |h(-)|p = {flh(t)|£ dt}l/p
and by C(T,;Zb the Banachpof continuous h from T to ;kz

with the norm |h(:)|_ = sup |h(t)|x . We also set

tP(r) = LP(T, EJL) and ct(:';'f = C(T,E).

Original and relaxed controls.
Let ‘72; be the class of measurable mappings from T

£o0 R. As in [5], we refer to functions from T to R as
"original controls". Let S be the class of regular Borel
probability measures on R, and %j/ the class of "measurable
relaxed controls", that is, mappings o from T to S

that are measurable in the sense that t -» IR ¢(r) o (dr; t)

is measurable on T for every continuous ¢ : R ~» El. We
define ~12 as a subset of g/ by identifying the function

t > p(t) with the function t - op(t), where cp(t) is a
measure concentrated at p(t) with mass 1. We also identify
all controls, original or relaxed, that differ only on sets

of measure 0.
Topology in the space of measurable relaxed controls.
We define a topology in J as in [5, p.631]; we repre-

sent by B the Banach space (which is actually the space
Ll(T,C(R))) of real-valued functions ¢ on T x R, continuous

on R for every t, measurable on T for every r, with

t » sup | ¢(t,r)| integrable, and with |¢] = Jfsup | ¢(t,r) | dt.
reR ‘] % FER
We then define every o ¢ %/ as an element of 33 (the

topological dual of 53 ) by setting <o, ¢> = fdtfR¢(t,r) g (dr;t)
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*
for all ¢ 553. The topology we choose for 8", and its subsets
£ R Q
$ and ﬁ,, is the weak star topology in 53 (the ¥ topology of

*
Q7). It follows that 1lim 0, = 0 implies lim fdt [/ ¢(t,r)o, (dr;t)
i—)co 1 i—boo R 1

fat [ ¢(t,r)o(dr;t) for every ¢ 59}.
R

Sets *{# and 'S# of restricted controls.

For a given mapping R# from T to the class of nonempty
subsets of R, we set 'ﬁ# = {p €Ti|o(t) € R*(t) on T} and
ﬁ# = {o ¢ 5|0(§#(t),t) =1 on T}, where ﬁ#(t) is the closure
ot rf(p).
We shall consider mappings R# satisfying either or both of
the following assumptions ([ 5, Assumption 2.3, p. 631]):
r?gti.l) For every € > 0 there exists a closed subset T, of
T, of measure at least ITI - €, such that for every t € T‘
and every r € & (E) there exists an original control p € ¥,
continuous at £ when restricted to Ter and such that
lo(®), rl <€
{73?1.2) For every € > 0 there exists a closed subset Tg¢ of
T, of measure at least Tl - €, such that the mapping R#, when
restricted to T, is continuous with respect to the Hausdorff

#(t2)| (where, for A, B CR,

distance of sets IR#(tl), R
|a,B] = inf {h|Aa CU(B,h), B CU(A;h)} and U(A,h) is the
h-neighborhood of A in R). Here we identify all subsets of

IR whose mutual Hausdorff distance is 0.

Formulation of the Uryson-type control problem.

Now let g = (gl,...,gn), and let (t,T,v,r,b) > g(t,T,v,r,k

T x T x En x R x B > En be measurable in (t,T) for every fixed
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(v,r,b) and continuous in (v,r,b) for every fixed (t,T). We also
assume that gl(t,t,v,r,b) = gl(r,v,r,b)(i =1,...,m < n)
is independent of t for all (t,v,r,b). Let
f(t,v,vys,b) = JR g(t,t,v,r,b) s(dr)
for all (t, T, v, b) and all s & S. We consider solutions

(y , ¢, b) of the integral equation

y{t) = f £, 1, y(1), o(1), b)dt (t € T)

in e ,j# x B, where %jiis some Banach space of measur-
able functions from T (o) En

A solution (y, o, b) is "a relaxed admissible solution”
if (yl, y2,...,ym) € B1 (observe that yi(i =1l,...,m) are
constant on T since gi(t, T, v, r, b) (i =1,...,m) are
independent of t). A relaxed admissible solution (y, &, b)
is "a relaxed minimizing solution" if ¥y 1 < yl for all

relaxed admissible solutions (y, o, b).

We relate the control problem just described to the general
problem discussed in §2 in the following manner: let
a{=‘jkﬁ x B and Q =_>J# x B. We let the mappings
(y, @) - Fly, q) = Fly, o, b) and (y, @) »cly, q) =
cly, o, b) be defined, for q = (0o, b) € yf#x B and vy ¢ ?(, by

Fly, o, b)Y (t) = Jf(t, 1, y(1), o(U), b)dr (teT ,
Ay, o, ) = st , v, o), At (i = 1,...,m),

if this defines F(y,o,b) as an element of ?4 R

, N
Otherwise we set, for some a ¢ i/ , a#b0,

F(y, o, b) = y + a,

C(YI a, b) = 0.
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We can easily verify that, in the case where T
is the interval [to, t1] of the real axis and g (t, 7, v, r, b)
“as a special form,
the Uryson integral equation becomes an ordinary
differential equation, our control problem the "standard"
control problem, and the results that follow a slight generaliza-
tion of previous results [ 5, Theorem 3.1, p. 633], [6, Theorem 3.4,
p.- 648]. We further discuss this problem in § 4.

We can now state existence and approximation theorems

that we prove in §5. In both of these theorems we set 7;L= L%T, En)'

Theorem 3.2 There exists a relaxed minimizing solution if the
following conditions are satisfied:
(3.2.1) the class of relaxed admissible solutions is
Y=gl .
nonempty for J_ LT, E) ;

(3.2.2) &'

satisfies Assumption (3.1.2);
and either

(3.2.3) there exists a positive function V¢, integrable
on T x T and such that, for every solution (y, o, b) of the

equation y = F(y,o,b), we have

lg(t, 7, y(t), £, b) | < ¥(t, T) on T xT X R x B,
or
(3.2.4) there exist real numbers Cyr Py and B and a
measurable wo on T X T such that 0 < 8 <», 1<p <=,

p 2> B,
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gL P w
T, (e, {l S - Y=

and every solution (y, 0, b) of the equation y = F(y, o, b)

fr?s such that |y(-)|p < e

i Theorem 3.3 Let R# satisfy Assumptions (3.1.1) and (3.1.2), and let y b
the unique solution of the equation y = F(y,0,b) for
g =20 € k/# and b =b € B. Assume, furthermore, that

(3.3.1) the equation y = Fly, p, b) admits at least

one solution y in Ll(T, En) for each p € 12# in some

neighborhood of G, and either condition (3.2.3) or condition

oo
in~\f2} and a sequence {yi}: -1 in Ll(T, E ) such that

(3.2.4) iS'satisfied.i Then there exists a sequence {pi

! y; = Fly;, p;, b) and lim cly;, p;, b) = cly, o, b).
Loe S i

4. Necessary Conditions for a Relaxed Minimum of a Uryson-type

Control Problem. We shall investigate necessary conditions

for a point (y, 0, B) to be a relaxed minimizing solution

in a somewhat different framework than was required in §3.

Assumption 4.1

! (4.1.1) '7%{ is either LP(T, E ) for 1< p<=or

c(T, En)Iand T and R have the properties described in §3;

(4.1.2) B is a convex subset of a linear space;

(4.1.3) for every fixed choice of bij €eB (i, j=1,...,m)

there exists Wax € (0, l/mZ] such that, for Q =

{(w®= (w9, j=1,...,m]0 < wt] < wmax} CE, , the func-

# o m m ij -
(t,T,v,r,w) = gl{t,7,v,r,b+ L w ' (b,.-b)) :
i,3=1 +J
T x T X En X R X Q > En has a derivative with respect to

(v,0d)y, anda g# ,gﬁ , and gxu are measurable in (t,T)

tion (t,T,v,r,w') > g
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for every (v, r, w® and continuous in (v, r, wl) for
every (t,T);

(4.1.4) if AQL= LP(T, En) then there exist measurable
positive functions wo and wl on T x T and numbers o and B

such that 0 < a < p-1, 0 < 8 < p, f]wo(-,r)lg/(p-e) dt < «,

9| P " . p/(p-1-a) ©
SIEAND ) (oo1mgy Ot < = Il ,r)lp dt < =,

and, for all (t, 1, v, r) ¢ T x T x En x R, bij € B,
and wHe Q,
e, ©,ov, s <+ VB e,
lgt,(t, T, v, ta®)| < @+ |v|H by (e, 1),
and
IGtg(t, T, v, r, WP < (14 lv|®} Yoty 1)
if U = c(T, En) then there exists a compact set D in En

containing {y(t)| t € T} in its interior and integrable ¥y

and wl on T such that

e, ©, v, ra®™ | < by (1),

Igf,(t, T, v, )| <y (1),
and

#
]gwﬂ(t, 1, v, r, o) < o (1)

for all (t, 1, v, r) ¢ T x T x D x R, bij e B, and

wP e Q. Furthermore, there exists a positive function h » §(h)

t ¢

~ #
such that, for t,, ty €T and g =g, g, « and g o,
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fgggxn | gtey » 1, v, x,u®) - glt, , 1, v, re®)lar < e, 4 g,

and 1lim §(h) = 0;
h+ +0

(4.1.5) for k(t,1) = £ (t, T, y(1), o(1), B) on

T x T, the integral equation
wit) = fk(t, 1) w{t)drT (t € T)
has only the solution w(-) = 0 in %A.
‘ Resolvent kernel. If there exists a measurable real matrix-
valued function k* = (k*§)(i, j=1,...,n) on T X T such

that, for every x € %{, the relations

wi{t) = Sk(t, T)w(T)dT + x(t) a.e. in T

w(t) fk*(t, T)x(T)dt + x(t) a.e. in T

are equivalent in E&‘ we refer to k* as a resolvent kernel
of k. R
We can now state necessary conditions for a relaxed
minimum in Theorem 4.2 below. Conditions (1), (2), and (3)
of (4.2.2) are generalizations of respectively the Weierstrass
E-condition, transversality with respect to parameters and

initial conditions, and transvarsality with respect to the end

conditions of the calculus of variations.

‘ Theorem 4.2 Let (y, O, b) be a relaxed minimizing solution,

and let Assumption 4.1 be satisfied. Let\”ﬁli be a
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*
denumerable subset of \ﬁf, R (t) = {p(t) | p e th} (t eT),
—* * * _*
R (t) the closure of R (t), S (t) = {s ¢ S| s(R (t)) = 1},
K, a convex set in some Eﬁ’ T e Ky, and ¢ : K, +B, a
continuous mapping with a derivative at E and such that

¢i(f) = ci(§, o, b)) =y i(i =1,...,m). Then

*
! (4.2.1) there exists a resolvent kernel k of k
"
| such that k -~ is independent of t for i =1,2,...,m;
* -
and |7 (-, | g/(p Vit < » if Ii = 1P(r, E) and

*
J sup | k (¢,7) | 41 < » if :%£= C(T, E );
te T n

(4.2.2) either '¢é(€)€ = Min ¢E(E)E '
€K :
or there exist a nonvanishing L= (Alr---,lm) € B

andy > 0 such that,setting

l;\ = (All"'lxmlol"'o) = (A'O""'O) € En ’
|
. m . . k| .
‘ CJ(T) = z )xlk*l:(‘[) +-L (IE-TI J=11°--rn)l
: i=1 J I
| t() = o), ) trem),
i H (s, &) = fz(r) - £(1, 8, y(6), s, b)dar ( (s,8)asT),

and
Hy(b) = fp , pt{1) * Df(1,0 , y(8), o(8), b; b - b)dtde (beB),

the following conditions are satisfied:

(The Weierstrass E-~condition)

(1) H;(o(8),8 ) = Min H,(s,0) =
seS*(0)
Min f z(t) - g(t, 8, y(8), r, b)dr for almost
reR* (9)

all 6 e T,

(Transversality Conditions)

(2) Min H2(b) =0,
bEB
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and
3 (ysg - A)¢€(E)E = ?ig (v8, - x)¢E(E)£, where
1

61 = (1, 0,...,0) ¢ Em.

— %
In particular, if R#(t) =R for all te T, R (89)
*
and S (8) can be replaced by R and S, respectively,

in relation (1).

An illustration. As an illustration, we shall apply Theorem 4.2

to the following "standard" relaxed control problem: let T be
the closed interval [to,tl] of the real axis, dt the Lebesgue
measure on T, B1 C Em, B a convex subset of some EQ, ¢0

a continuously differentiable mapping from B into Em with
the image BO’ and h: T x Em X R ~» Em' We wish to determine
functions x: T =+ E  and g: T + § that yield the minimum of

xl(tl) among all absolutely continuous x and all measurable

(in the previously defined sense) ¢ that satisfy the relations:

g%éll = [ h{(t, x (1),r)o(dr;t) a.e. in T,

R

x(to) € BO, x(tl) € Bl’

We set n =2m, g = (gl,..,gn), y = (yl,..,yn), v = (wl,wz)

with W W, € Em’ and, for all (t,t,v,r,b) e T x T x En X R x B

and i =1,2,..,m,

v = 1,
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yhie) = xl(tl),
h(T,wZ,r) + ¢0(b)/(tl—t0) for T < t,

i+
gl m(tlTlvlr!b) =

¢q(b)/(ty-ty) for 1 > t,
. ‘4
gttt,t,v,r,b) = g "Mty ,T,v,1,b) .
We then observe that our new problem is formally equivalent
to the Uryson-type control problem considered in §3 and in the
present section. We can easily verify that Theorem 4.2 is ap-

plicable if we set IL3= C(T,En) and assume that
(t,w,r) +» h(t,w,r) and hw(1,w,r)

exist on T «x Em x R, are continuous in (w,r) and measurable in
17, and that |h(t,w,r)| and {hw(T,w,r)| are bounded by an
integrable function of 1t for all (w,r) € D x R, where D is
some compact set in E_  containing the trajectory {x(t)|t ¢ T}
in its interior.

We can evaluate the resolvent kernel k* by a straight-

forward (if somewhat tedious) computation and determine that

1
_to

B - 1 i -
to(1) = = A o=
t -t t

Zj(tl) (treT j=1,..,m),
1

Cj+m(T) = —de(T)/dT (teT, j=1,..,m,

where the absolutely continucus function 1T + z(t): T > Em is

the solution of the system
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Q%Lll.: z(t) = - AT(T)Z(T) a.e., in T,
T
z(tl) = A,
AT is the transpose of A, and A(1) = (Rhw(t,i(r),r)a(dr;r) (1eT) .

It follows then that
Hy(9,7) = 2(0)+ [ h(¥,%(0),r)3(Ar;¥) + 1 z(ty}-X(ty) (deT,reR
R TTT
Thus relation (1) of Theorem 4.2 yields the familiar Weierstrass
E-condition (maximum principle) for the relaxed control problem
defined by ordinary differential equations. In a similar manner,
relations (2) and (3) yield the support (transversality) condi-

tions at the initial and terminal points t0 and tl, respectively.
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5. Proofs of the Statements in §2. The proofs of Lemmas 2.1

and 2.2 are trivial and will be omitted.

Proof of Theorem 2.3 We first consider the special case

where B, ={(b1,...,5“) | bt =0 (1 =2,...,m}.

Consider the equation

m P
(5.1) y = F(y, q + ) w gL - an
. 1 J

for an arbitrary choice of gq®=

(qij) with qij € Q. We
can apply, with minor changes, the proof of the implicit
function theorem [Il, p. 265] to show that there exists a
neighborhood Y x & of (y, 0F) relative to x @ such

that equation (5.1) has a unique solution y = n{wl g% ¢ ¥

for every wis Q and the function w® > n(wn, qa) : Qo+ ¥
is continuous and has a derivative at 07, It follows that
| m

w8+ cw® ™ = cmw® g9, g+ = wl](qij -q) : 0+ E

[ i,j=1 "

is also continuous and has a derivative at 0 .
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61l

Now let =8,0% =0 ((i,5) # (1,1)), &i- =q(i,j = 1,..,m),

]
n(g; q) = c(8%, g%, v = {dh(0; q)/d6 | g € Q} , and let W

be the convex cone in Em generated by V; that'is,
m . . in
W=4{ % a“vy | v; € v, at > 0} . We shall showa.he sequel
i=1
that there exists A ¢ E such that |x| # 0, Al > 0, and

Aw >0 for all w e W.
If this last statement is true, then ) "~ dh(0;g)/d6 > O

for all q € Q. We have dh(0;q)/ds =

cy(?,a)n 11(0n’ g% + Dc(¥, 9@ 9 - Q. Also, the differentiation
w

of both sides of the equation n(8% §9 = F(n(6"; 9, q + o't

with respect to ell at 0"

(@ - Q)
yields

o o~ - - B & - = —
n 11(0% §h = F, @G, q)nmll(o . §) +DF(Y, 9: 9 - Q).
We then conclude that
(5.2) A - dnh(0;q)/de = A + {c, (¥, (I - py(§,a)>“1np<y,a;q - @
+ Dely,  q; g -9} >0 for all q e Q.

We now proceed to prove that there exists a point ) as
just described. 1Indeed, assume the contrary. Then it follows
from elementary properties of convex sets that there exists
a point w = (wl, 0,....,0) 1in the interior of W, linearly

independent W, € W and positive al(i = 1,...,m) such that

w1 < 0 and w =

e 3
Q
£

By the definition of W, there exist points qij and numbers
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(i, j = 1,...,m) such that a'l > 0 and

a'd an(o; a;4)/de i =1,...,m.

<
I
=

1

Since the w, are independent, the matrix (wg)(i, i=1,...,m)
is nonsingular.

(i=1,...,m} , where

T = < i<
Now let T {y ¢ E_ | 0 <y < Ymax

Y max is positive and sufficiently small so that wc(Y) =

(wij(Y)) = (Yi

alj) e {{, and consider the function Yy+k{y) =
SwPy); g : T » E . This function is continuous and has
a derivative k (0) = (3k (0) /3yL,...,0k (0) /0y™) at 0 relative

to T (where ak(O)/BYl are right-hand derivatives). Furthermore,

k(0) /3y = 1 - auid £_ % ; .2t
Y = z dh(0; q..)/de 3w~ (0) /3y = I dh(O,%!.)/de a
i,j=1 1] 3 =1 J
r
= w, (F=1,...,m); hence the derivative k (0) = “?) has an
inverse and kY(O)a = w = (wl,O,...,O) for a = (al,...,am).

It follows (as in [6é, p. 650]) that there exists a solution

€ ~ y(e) of the equation
k(y(€)) - k(y(0)) = ew

for all sufficiently small positive €, and yi(c);::g (i=1,..,m).
There exist, therefore, q = q + . ?~ wij(Y(C))(qij -q €0

and vy = n(wB(y(e)); g & ). stéﬁ_that y = Fly,q), Ci(yrq) =0

(i =2,...,m), and cl(y,q) < cl(y, q), contradicting the
assumption that (y,q) is a relaxed minimizing point.

We conclude that when B = {(bl,...,bm)|b1 =0(i=2,...,m}
there exists a point A ¢ Em such that |A{ # 0, Xl >0,

and relation (5.2) is satisfied.
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We now consider the general case and define the sets

Q# and Bi and the functions F! : x Q# ﬁ[ and
c#:‘lj x ot » E ., by
of = o x Ky, Bf = w0 vl v | vo=o0(i=1,.
F#(y,q,i) = F(y,q),
%y.q.8) = Ly,

C
5 !
My,a8) = Ly - ot (M=1,...m.

Clearly, the point (y,q,%) is a relaxed minimizing point
for the problem defined by 11, Q#, Bi, F# and c#, which is
of the form just investigated. The conclusions of the theorem

follow from relation (5.2) applied to the transformed problem;

the details of the argument are as in [é, Proof of Theorem 2.2,

p. 650]. QED

6. Existence of relaxed and approximate minimizing solutions.

for Uryson-type problems. Proofs.

Lemma 6.1 Let conditions (3.1.2) and (3.2.3) be satisfied,

and let

¥, =1{y e lﬁ | v = Fly, 0, b), o ¢ )J#, b ¢ B}. | Then every

sequence {y. }l =1 in Y, has a subsequence converging to

some y € 2l= Ll(r, E).

Proof: Let y, = F(yi, oy bi)(i =1, 2,...,), Yy € 7j )
<

o; € »j#/ and b, e B. We must show that there exist a sequence

J of natural numbers and a point ¥ in %{ such that

limy, =y in L/
ieg % N

Let, for v e E_, xtv) =1 if Jv| <1 and
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x(v) = Tle if |v| > 1,
v

g(t, t, v, r, b) x{lglt, ©, v, r, b)|/v(t, t))glt, T, v, £, b),
and

£(t, t, v, s, b) = Jp g(t, T, v, ¥, b)s(ar),

for all t, 1, v, r, b and all s € S. Then, by (3,2,3),
é(t, 1, y{(t), r, b) = g(t, 17, y(t), r, b) on T x T x R x B
for every vy € Y27 hence every solution (y, o, b) of the

equation y = F(y, ¢, b) also satisfies the equation
(6.1.1) yi(t) = [ f(t, T, y(1), of(t), b)dr (t € T).

Furthermore,

lgtt, T, v, r, b)| Y(t, 1) on T xTxE xRxB
and é is continuous in (v, r, b) and measurable in f{t, T).

Now let ¥ (t)

fe(t, dt on T, Sy ={ve&E]| | v| <N},

N
Pp,={teT| &(t) < N}, and € > 0. Then there exists

N = N(e) such that, for P = PN(c),

(6.1.2) J dtfy_¥(t, T)dt < ge.

Since g 1is measurable in (t, 1), continuous in (v, r, b)

onthe compact set Sy X R x B, and |§(t, T, v, r,b) | <, 1),

i

the restriction of § to T x P x 5, xR xB is, for each

i=1,...,n, an element of Ll(T x P, C(SN x R x B)); there
exist, therefore, an integer k = k(e¢) and functions

Q. € T-1(T x P, En) and Bj £ C(SN x R x B) such that

j L
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k

(6.1.3) fofp Max | g(t,t,v,r,b) - I B.(v,r,b)a (t,1) | dtdt < F e.
S\ *RXB =1 3 J

Furthermore, each oy € Ll(T x P, En) can be approximated
by a finite sum 15 bI(T) a)ét), where b‘l are measurable
characteristic functions on P and al € Ll(T, En). We
conclude, therefore, that relation (6.1.3) can be rewritten,

by appropriately changing the definitions of k and Bj, as

F ™

(6.1.4) fof, Max |§(t,T,v,r,b) -
Sy ¥RxB b

Bj(v,r,b)bj('r)aj (t) | atdr < 3 €,

o1&

1

and we may also assume that |Bj(v,r,b)| <1 on S XRxB.
Now let

Yyi T in(e) =Jp bj(r)dT.&Bj(yi(r),r,bi)ci(dr;r)-

We observe that
ly; (©) | < slE¢e,T,y; (1) ,0; (1) ,by) | dt < Jy(t,T)dT < N = Nie)
for t e P=P(¢g) and all i =1, 2, 3.... Therefore, for

all integers p and q, for all t € T, and for k = k(e),

Iyp(t) - yq(t)] < 2fpp Wt maT + |y at{sg g(t,T,yp(r),r,bp)cp(dr;r

- IR a(t,Tqu(T) rrlbq)Oq(dr

k
< 2 t dr + z = Y . (t
< 2gpp Vit D)aT |j=1(YJp Yiq)2s ()|
. k
+ . E‘_ fP Max lg(t,r,yi(r),r,bi) - _E Bj(yi(T),r,bi)bj(T)aj(T)IdT;
i=p,i=q reR j=1

hence, in view of relations (6.1.2 and (6.1.4),

1 1
6.1.5 t) - d = + I .- . () |dt + 5 €.
( ) fTIyp( ) yq(t)l t<ze j=1|Yjp yquleaJ( )| 5
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Given any infinite subsequence J of {1, 2,...}, we

can determine a subsequence g/ = J/(i, e¢) such that the

sequences {in(e)}i 3/ have a limit, for each j =1, 2,...k(e),

since |le| |[P| < |T| for all i and j. Now let

, y
To =1l 2, b, 3 =370, ) =01 20,
and let J be the diagonal subsequence of JO' Jl,.... .

Then {Y (e)} converges for each € > 0 and j=1,2,..., k(e),

ieJ
and there exists an integer i0 = io(e) such that, in view

of (6.1.5),

A
[

Sp lyp(t) - yq(t)l dat <

provided p > q > i,(e) and p,q € J.
We conclude that {yi(')}isf is a Cauchy sequence in

Ll(T, En) and converges, therefore, to some ; in Ll(T, En). QED
Lemma 6.2 Condition (3.2.4) implies condition (3.2.3).

Proof. Let (y, o, b) satisfy the equation y = F(y,o,b),
and assume that condition (3.2.4) is satisfied. Then, for

teT,
ly ()] < [58thy §(E, 1,y (0, r,mo@sn] < f1+ fy@]Pruge,nar
and, by Hdlder's inequality,

B f
ly(e)] < rogte,mar + |y ()10 Ivgtendl,, ogyS 1o ) 1/ pogy IT]

- B B/p
|w (t,- )Ip/(p 8) cl Y|¢ (t,- )lp/(p gy Where Yy =ci + || .

It follows that, for all (t, T, r, b) e Tx T x R X B,

lgtt,, y(0), £, DY < @+ P luger, )18, o g))wg (e,0)
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Now let the expression on the right be denoted by

p(t, 1), let c, ={I'w0(T")I§/(p+B) dr}&band let

p(t,1) = wo(t’T)le(T")lg/(p—s). Then, by HSlders inequality,
e, ar < v, (k) | O, (t, )] P ag)B/P
P = et s (p-g) 0" "' p/(p-B)
and
rrv’ (&, 1) dtdr < |z P-1)/p c21+B.
Also

foTwo(t,T)dth < w, It follows that (t,t) » yY(t,1)

is integrable on T x T. QED

6.3 Proof of Theorem 3.2. Because of Lemma 6.2 it suffices

to assume that conditions (3.2.1), (3.2.2) and (3.2.3) are

satisfied. Now let {(yi, o bi)}i=l be a sequence in

#
%{ x )S x B and Y; = F(yi, 04 bi)' By (3.2.2) and
[6, Theorem 2.5, p. 632] the set x{# is sequentially compact,

and by Lemma 6.1 there exists a sequence J and a § € %}L

such that 1lim Y; = § . We may choose J so that limo, =g
ied. - " - ied
and 1lim bi = Db for some o € z{ and b e B, and
ied
lim Y; =Y a.e. in T, say for t e T’
ied

For each fixed t and 1 in T/, glt, 7, «, +, +) is
continuous, hence uniformly continuous, on the compact set
DT X R X B, where D_r is a compact subset of En containing

;(T) in its interior. It follows that 1lim g(t,r,yi(r),.,bi) =
ied
gl(t,t1,y{(1t),-,b) uniformly on R and

lim Sp(g(t,T,y; (1),r,by) = g(61,¥(1),r,B))o; (dri1) =
iegd

lim ai(t,r) =0 for all +t,T ¢ T/. Furthermore,
ied
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/
|ai(t,r)| < 2y (t,t) on ™ x T’ and ¥(t,+) is integrable;

therefore, for each t ¢ Tf
y(t) = lim y, () =
ied
ii? Sp atfp(gle, T,y (1), £,b;) - glt,T,¥(1),r,B))o, (AriT)

+ ii? fp dr 4 g(t,r,§(r),r,5)oi(dr;r)

= lim [ d1 £ g(t,r,§(r),r,5)ci(dr;r)
ied

= fp dThy g(t,1,7(0),5,D)5 @r;T) = fof(e,1,¥(0,5(8) Bar ,

since the function (7,r) -~ g(t,T,?(T),r,B) € qb(as defined in §3).
Thus y(t) = F(;,;,g)(t) for t e T/. By redefining §’

if necessary, on T - T’, we can assert that § = F(§,;,B) and

thus the set of solutions of y = F(y,o,b) 1is nonempty and

sequentially compact in ' x)l# x B. Since yj = cj(y,c,b)

(3 =1,...,m) for every solution (y,o,b), the yj(j =1,...,m)

are constant, and Bl is closed, it follows that there exists

a minimizing relaxed solution. QED

a_m{,(} ) L) amJ L3
6.4 Proof of Theorem 3.3. By Assumptions (3L} A [§, Theorem 2.4,

p. 631}, the set “Xi# is a dense subset of >#%. There

. o . 3 .
exists, therefore, a sequence {pi}i=1 in se converging to
o. By (3.3.1), there exists an integer i0 and a sequence
{yi}1=i0
as in the proof of Theorem 3.2, that there exist Yy ¢ %{

e in 23[ such that y; = Fly;, p;r b). It follows then,

and a sequence J such that limy., =y, lim Py =9
ied ied_

and y = F(y,0,b ). By the uniqgueness assumption, y =Y.

Wit
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Thus 1lim cj(y Py b) = lim yg =y (35=1,...,m) since
ieg

the yi (j =1,...,m) are constant. QED

7. Proof of Theorem 4.2, We shall use the notation and the

assumptions of §4. We also set,for a fixed choice of

.’ #
bij (i,j=1,...,m) in B and 9y (1,3 =1,...,m) in hj ’

and for all of ¢ 2, Vve En' Yy € Ei, and t e T,

m P
bw') =b + = mlJ(bi.—E),
i,3=1 J

1
Qi
+

o ()

m i4 _
Z U)J(U-- -o)l
j=1 )

i,

f(tITIVI wn) = f(tlrlvlc(‘!;mn)l b(wn))/

Fly, 0 (t) = SE(e,T,y(1),0f)dr .

Lemma 7.1 Let b and o4 (1 j =1,...,m) be fixed. Then

in some neighborhood I' of (¥,0°)
(y,08) -+ F(y w?): tj‘x Q > lj“ is continuousAand has a derivative
at (y, 0 ), the partial derivative Fy exists and is conti-

nuous.on I; and the following relations hold:

(;‘y (y,0ay) (t) = J’T§V(t,'r,y(‘r) ,o Ay (T)dr (te T yeq,Ay ey, wPen) ’
F,a@,0% (8) = foE o (e, 1,y(0),0Mdr (ke T, ye ’7,1),

(E‘y()_r,OE)Ay) (£) = Jp k(t,T)ay(t)dr (t e T, oy ¢ zi),

and

§w1f§,0c)(t) = fo(t,r,§(T),oll(T) - o(t),b)dar +

fp DE(t,T,¥ (1), S(1), B; b, -Bar (t e 7.
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Proof: We first consider the case 2 = 1P (T, En) for
1 <p<w Let yc¢ 2/ and wktfl be fixed.‘ We observe that
the function (t, 1) ~+ %(t,’l‘,y('[) ,w"—’) is measurable on
T x T and IEE, Ty, |Pae <
Mg, P @+ ly@[BPar <y 0B @+ Jy@|HP <=
for almost all 1t € T. Thus the function t -+ f(t,r,y(r),wa)
belongs to P (T’En) for almost all 1 e T and [9, Lemma 16,
p. 196] Tt > E(-,r,y('r),w") is a measurable function from
T to LP(T, En)' Furthermore, T ~ 1 + |y(r)|B € Lp/B(T)

and T > ]\po(.,-[) ‘p € Lp/(p-ﬁ) (T); hence, by HSlder's inequality,

flE(-,r,y(T),w':')lp dt < J’|\po(.,r)|p (1 + Iy(r)IB)dr < w,

Thus 1 »> ~f‘(-,T,y('r),m':') is an integrable function from T
and mc’~s Q,
to Lp(T, En) for all y € LP(T, En)/\ and F exists on
tP(r, E) x Q.
n
Now consider the continuity of F and the existence and
n

continuity of f‘y. We have, for fixed y € ?(/_ and w- € &,

and for all Ay € i}(,
(7.1.1) F(y + dy,07)(t) - Fly, 0D (t) =
f{i‘(t,r,y(r) + Ay(t), D) - E(t,‘r,y(‘r),w") Yt =

SR ety (n) 4 B(E, DAy () WAy (DdT ace. in T,

where 0 < 8(t,t) < 1, and we may assume (using essentially
the argument in [13, Lemma 18.1, p. 177]) that (t,7) » 6(t,t)

is measurable. Furthermore,
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|£, (£, T,y (1) + B(t, DAy (1) ,0B) ] <

1+ (y@ | + oy DMy (e,
hence
fl%v(t,r,y(r) + 6(t, Ay (D, |Pat <

@+ y@| + [ay o DHPly 0B .

It follows that t - Ev(t,r,y(T) + 6(t,)Ay (1) ,u"

belongs to P (r,E 2) for almost all T e T and
n

I A

|F(y + ay,w®) - f(y,wn)|p

S+ (y(n)| + |Ay(T)|)a)|¢l(-,T)|p Ay (T) | dt .

We can easily verify that, for a fixed y 1in 2], the
coefficient of |4 y(t)| in the integrand on the right has an

P/ P=1) [ orm bounded by some constant ¢

1 for all Ay in
the unit ball of Lp(T,En).

We conclude that
|F(y + by, 0D - F(era)|p S °1|AYlp

for all Ay e LP(T, E ) and wPe Q. Thus y -~ %(y,wa)
is continuous at every y, uniformly in wBe Q.
Our previous argument shows that the function
Ay - tji(Ay; y) = I%V(-,T,y(r),wn)Ay(r)dT is a bounded
linear operator on Lp(T, En) for every (y,wa). Relation

(7.1.1) now yields
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(7.1.2)  [F(y + dy,0®) - Fly,0® - 0, @y: Y& | <

Suplg\f(trﬂy(r) + 8(t,T)Ay (T)ra) - gi(t,T,y(T),r,w”)l Ay (1)} dr.
RXQ

As Ay converges to 0 in Lp(T, En), hence also in measure,
the coefficient of |Ay(t)| in the integrand on the right
converges to 0 in measure, as a function of 1, for almost
all t € T. This coefficient is also bounded by a{t,T) =

b &, @+ Iy %+ dy@| + [ay(m D%, and we verify
that t ~+ |a(t")|p/(p-1) belongs to LP(T). It follows,
applying HSlder's inequality to the right side of (7.1.2)

and then taking the tP-norm with respect to t, that

lim |F(y + Ay, ,0lh) - Fly,of - [];(Ay; v /|bsy| = 0
lay| >0 P P

P
for every y € P (T, En), uniformly in w® € @ ; hence
/7 > a P
./l(Ay; y) = Fy(y, w Ay (Ay e LE(T, En)), and
E‘y(y,w‘:') is the operator Ay + fT %v(-,'r,y(r) ,w8 Ay (t)dt .
Thus ;‘y(y,w") and %y(?,o") have the form indicated in the
statement of the Lemma.

The argument we have used to prove the existence of Fy
via inequality (7.1.2) and Assumption (4.1.3) can be

used to show that

le(yl ,ud) - Fy(y2 wdH| >0 as y, >y, in 7%, uniformly
in wB ., Thus y - Fly,»d) and y -+ f‘y (y,wf) are continuous
at each y, uniformly in wB e Q. Similar arguments show

that %+ F(y,w9 and ol - f‘y(y,wt’)
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are continuous for each vy ¢ ; Wwhence we conclude that
(yﬂu% -> ?(y,wu) and (y,w ay ? (y,w¥) exist and are continuous
on ?j\x Q. Finally, the existence of F (y, 0 ) follows
from that of § a(t,T,y(T) 0 ) and the bounds in (4.1.4).
Thus (y,0") » F(y,wn) has a (total) derivative at (y, 05).
The same conclusions can be reached by similar arguments

when %z = C(T, En). QED

Lemma 7.2 The mapping I - Fy(§' o, b)Y 1is a linear homeo-

morphism of ’%i onto ~%L, and statement (4.2.1) is valid.

Proof: We have shown in Lemma 7.1 that

(F (¥, T, Blay) (£) = Sk(t,T)by(t}dt  (te T, Aye )_L).

By Assumption 4.1, k is measurable on T x T and |k(t,1)|

is bounded by y(t,7r) = (1 + |§(T)|a)wl(t,r) for = LP(T, E).
We verify then, as in Lemma 7.1, that f|$(-,1)|5/(p-l)dr < o,
It follows [}, p.518] that Fy(i, g, b) is a compact operator
on Lp(T, En)‘ Similarly, if pf{ = C(T, En), the family of
functions t » Jsk(t,1)ay(1)dt corresponding to all Ay such
that Max |Ay(t)] < 1 is uniformly bounded and has the common
modulusegf continuity §. Thus, in both cases, Fy(?,a, b)

is a compact operator. It follows, therefore, from (4.1.5)
that I - Fy(i,E,E) is a linear homeomorphism of "L' onto

T

.{ [12, Theorem 5, p. 579].

Let K = Fy(;?,'o‘,S) and K = (I - K1 - 1.
For = LP(r, En)' the arguments of [14,pp. 157 - 160]
(applying to the case n =1, p = 2) can be suitably generalized
to prove that K* is an integral operator such that

(K* Ay) (t) = fk*(t,T)Ay(T)dT (t eT, Ay ¢ /4y, where k* is as
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described in (4.2.1). (These arguments, in their generalized
form, are based on approximating the function T > k(-,T)
in Lp/(p_l)(T, P (T, E )) by finite sums of the form

Zaj(T)Bj(°)). Finally, since kl (i =1,...,m are independent

of t and K* = K + KK*, the k*§ (i=1,...,m) are also
independent of t.

For %¢= c(T, En), we observe that since K* = K + KK*
and K is compact, so is K*. There exist, therefore [15,
Proposition 9.5.17, p. 665], a measurable k¥ = (k*})(i, 5 =1,...,n)

3
on T x T and a nonnegative regular Borel measure u on T
such that
* -
(K Ay) (t) = fk#(t,T)Ay(T)u(dT) (t e T, Ay € 30
*

and Sup Sy ]k*(t,r)|u(dr) < ®, Qur conclusions about k

teT
will follow directly from the Radon-Nikodym theorem once
we prove that, for all t € T, the measure A > IA k#(t,r)u(dt)
is absolutely continuous with respect to our original measure
A+ fA dt. This we can do by observing that if K Ayi {:g 0

* *

in 1} , So does K Ayi = (I + K )K Ayi ; and then considering
any sequence {A;} of Borel sets in T such that [Ail =+ 0
and "approximating" their characteristic functions with continuous
functions a, such that 0 < ai(t) <1, ai(t) =1 on Ci ,

ai(t) =0on T - Gi , where Cj.CZ Ai CGi R Ci are closed,

G; are open, and u(G; - C;) + |G, - C;| >0 as i+ . QED

7.3 Completion of proof of Theorem 4.2. Lemmas 7.1 and 7.2

show that Theorem 2.3 is applicable to the control problem as
defined in 84, and that statement (4.2.1) is valid. We have,

for q = (o,b), oy =0 )by = b,
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DF(Y,3; @ -~ @ = DF(y,5,B ; (o,b) = (3,B)) =F ,,(¥,0)
W

ci(y,q) = Fi(y,q) (i =1,...,m.

* . *
K be the linear operator on za{defined by k and

~

* —_— — -
A= (1,0,...,00e E_. Then K = (I -F §,@) 1_1

applying Lemma 7.1, relation (2.3.2) can be rewritten as

R-(r, (7,9 (T - Fy(y,a))'lw(}‘.a; q -3 +DFF,a q- D}

1)
N * ——
= X- (I + K )DF(¥,q;: q)
m . . _ s - — —
= 1 a7 s (6,7 (8) 0 (0) - T(O),B) + pt’ (6,5 (6),0(8) ,b;b-b) }ds
j=1
n ; : j
LT k*§(T){f](T'9,§(e),g(e)—g(e),B)+Df](T,6,§(e)15(9):B7b'5)}de
j=1

=/ 48/, c(r)-{f(T,e,y(e),o(e)—E(e),E)+Df(T,e,§(e).E(e),E;b—B)}dT

=fT

for

H2(b

Hy (0(8),8)de - Jo Hl(E(e),e)de + Hy(b) >0

all (o,b) € Ej# x B. In particular, for o =

Qj

) > 0 = Hy(b) for all b e B.

It remains now to prove relation (ly. Let \vii = {pl,pz,..
{1, 2,..}, E be an arbitrary measurable subset of T,
b, and o(t) = p;(t) for te E, o(t) = o(t) for

T - E. Then relation (7.3.1) yields

Jg {H (0, (8),0) - H; (0(8),0)}d8 > 0,
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where Hl(r,e) = Hl(sr ,8) and s, is a measure concentrated
at r with mass 1. It follows that for each i there exists

a subset T, of T, of measure |T|, such that
H, (p;(08),0) > H,(c(0),8) for all © ¢ T,.
V; <«
Then, for T = /7 T. ,

(7.3.2)  Hy(r,8) = f £(1)-g(1,8,¥(8),r,B)dt > H, (5(6),6)

for all 6 e ™ and r ¢ R*(e). We verify, using properties of
k* described in (4.2.1) and the bounds on ,g described in
Assumption (4.1.4), that T -+ z(t) - g(1,0,y(8),r,b) is
bounded for all r and almost all €& by an integrable function
of 1T. Since, furthermore, it is also continuous in r, we con-
clude that relation (7.3.2) 1is valid for almost all 6 and
all r € R *(8) and, integrating both sides with respect to
any S € S*(e), that relation (1) is valid.

When R#(t) =R on T, we may choose as aﬁzi any set
of constant functions from T to R whose images form a
dense subset of R; then ﬁ*(t) = R and S*(t) =S for all

t € T. QED
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8. Proof of Theorem 1.3.5. Those parts of Theorem 1.3.5 that

refer to the existence and necessary conditions follow directly
from Theorems 3.2 and 4.2 whose assumptions are weaker. The
statement asserting the existence of "approximatin~" sequences
{pj} and {yj} will follow from Theorem 3.3 if we can prove
that the equation y = F(y,p,b) admits at least one solution

y in Ll(T,En) for each o eﬁz#. This last statement follows
from the fixed point theorem; indeed, for each p, the mapping

y > F(y,p,B) is continuous in C(T,En) and, because of the
boundedness and the uniform continuity of g, the image of this
mapping is contained in a convex and compact set of functions in

C(T,En) with a common bound and a common modulus of continuity.

QED
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ORIGINAL MINIMIZING CONTROLS FOR INTEGRAL EQUATIONS

by J. Warga

1. Introduction . We consider a class of variational problems

defined by the Uryson-type integral equation

y(t) = (yl(t),-..,yn(t)) = [ g(t,t,y(1),p(T), b)u(dt) (teT)
T

where p 1is chosen from a given set géz of "original" (unrelaxed)
controls and b from a given convex set B of control parameters.
We have investigated, in [1] , a related problem in which the

set SE? was imbedded in a set ‘, of
measurable relaxed controls, and have discussed the existence of

a minimizing relaxed control, its approximation by original

controls, and necessary conditions for a relaxed minimum. Since,

as it is well known from the control theory of ordinary differentia

equations, the existence of a minimizing original (unrelaxed)
control cannot be assured, except under very restrictive conditions
we begin the present study with the a priori assumption that there
exist an original control e 5;2 and a parameter b € B that
yield a minimizing solution of the variational problem in 5E?X B.
We then show, applying certain results of [2] , that the necessar
conditions for minimum derived in [1l] (generalizations of the
Weierstrass E-condition and of the transversality conditions) re~
main essentially valid in the present context. Our present
results are limited to the case where T 1is the closure of a
bounded open set in the Euclidean %-space E, and u is
absolutely continuous with respect to the Lebesgue measure (wherea

in [1] T was only assumed to be metric and compact, with an

*
This research was supported by N.A.S.A. Grant NGR 22-011-020.
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appropriate measure); within this context, however, the present
results generalize the necessary conditions of [1, Theorem 4.2]
in that the given class of controls may, but need not, consist of
relaxed controls and the remaining assumptions are also slightly

weaker.

References to other related work can be found in [1].

2., Necessary conditions for minimum. Let T be the closure of

a bounded open subset of El , R a metric space, B a convex

subset of a real linear space, Bl a closed subset of Em .

nsm, g-= (91,---,9n) , and (t,T,v,r,b}) » glt,7,v,r,b) :
TxTxE xRxB>E . We assume that gt(t,t,v,r,b) =.
gl(r,v,r,b) (i =1,...,m) are independent of t.
For $: T > R, Pyt T+ R (i=1,...,k) and disjoint
subsets Al,...,Ak of T , we define p = [pi , Ai(i =1,...,k); pl :
T + R by p(t) = pi(t) for t ¢ Ai(i =1,...,k) and p(t) = p(t)
k

for teT-U Ai . Let 522 be any class of Lebesgue measurable
i=1

mappings from T to R with the property that, for every set

A that is a finite or denumerable union of intervals in El B
(pl‘e:Q,p2 EQ) implies [pl , A ; 92] € R

Let u’ be a Lebesgue integrable scalar function on
T (viewed as a subset of EZ) , with u’(1)>0 on T , and let

U be a positive measure defined on the class of Lebesgue measurable

subsets of T by the relation up(a) = Sfu’(t)dt , where dt refers
A

to the Lebesgue measure in E2 . Let :}' be either the Banach

space Lp(T P VR En) (of functions from T to En) for
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1 < p <« or the space C(T , En) (of continuous functions from
T to En) , each with the usual norm. We consider the integral

equation

(2.0.1) y(t)y = J g(t,7,y{t),p (1) ,b)u(dr) (t € T)
T

for (p,b) € ?x B. A point (y,p,b) ¢ }x Qx B satisfying
equation (2.0.1) is an "admissible" solution if (yl,yz,...ym) €
Bl (observe that yi (i =1,...,m) are independent of t) .

An admissible solution (y,p,b) is a "minimizing" solution if

)-/1 < yl for every admissible (y,p,b).

Qur purpose is to derive conditions satisfied by a
minimizing solution (y,p,b) that generalize the Weierstrass E-

condition (the maximum principle) and the transversality conditions.

We shall use the term "measurable" in the sense of the
Lebesgue measure on EE when referring to subsets of T or
functions on T ,and in the sense of the corresponding
product measure with respect to T x T. We represent by |a|
the norm of an element of a normed linear space. If x and
9 are Banach spaces, I‘cx and x*h(x):T +; , we define
the derivative hx(xl) as a linear operator from r to ;
such that |h(x) - h(x)) - h (x)) (x - xl)l = ol|x - xll) for

all x e T . We denote by h hy the derivative

(x,y) * By v
and the partial derivatives, respectively, of a function

(x,y) > h(x,y) from a subset of a Banach space to a Banach

3
T
U]
0
]
|
3
[s}
=
=1
D

represents the identity operator on y
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8 (x,}) the linear space of bounded linear operators from
a Banach spacejc to a Banach space 3 with the metric topology
induced by the operator norm, A° the interior and A the
closure of A , and % an array (wij)(i s, J=1,...,m). If
h:x x B + } , where 3 is a Banach space, we write

Dh(x , b, ; b - bl) for the one-sided derivative

1

lim %(h(x , b

+ a(b - b.)) - h(x , b.)).
a++0 1 1

1

Assumption 2.1. For every fixed choice of ba , with elements

b*d e B , the following conditions are satisfied:

(2.1.1) there exists o € (0, 1/m2] such that, for
o, _ _ L] ij c :
:r(b y = T =te o < 8770 < Opax! € Ep2 + the function

g o
(t,T,V'r,e)"g#(t, Ivlrle)=

T
_ m 19014 B
gt , 1, v, r , b + z et - b))
i, j=1
TxTxE xRX 7. E has a derivative with respect to
# #

(v , 9) everywhere, and g , g and gga are measurable in

(t , 1) for every (v , r , 8“) and continuous in (v , r , en)

v
for every (t , 1) ;

(2.1.2) (1) if 'V = tP@ , n; En) then there exist
measurable positive wo and wl on T x T and numbers o

and B such that 0 <a <p-1 , 0« B <p,
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IS et ) |Puat) 1t/ ® Bl an < -,
T T

Sl- @ anr®P Tl T Y E < oo,

1- 0‘)u(d'r) < «» , ang, for

all (t, t, v, r,8" e T x T x E xR B g

I;(t LT ,v, e, 89 <1+ |V|8Wo(t , T) for

B I A S L B SRR I s R GO B

(2) 1if ‘,= c(T, En) then there exist a compact set D

{g(t)|t e T} in its interior and an

integrable scalar ¢ on T such that, for § = g# ’ gt , and
have
1§t, T y v, , 8 cv(n)
t, 1t ,v, r, e°) e TxTxD xR xJ . Furthermore,

for all

there exists a positive function h =+ ¢(h) . such that

lim & (h)
h~++0

=0 and, for t; , t, e T and §g=g

/ Sup
DxRxYJ

# #
and 9y

N - N
lgte, vt v, r,8) -8, , T, Vv, 1, o) u (c

< Cb([tl - t2|);

93



ORIGINAL MINIMIZING CONTROLS FOR INTEGRAL EQUATIONS

(2.1.3) for k(t , 1T) =g (t , T, v(t) , p(1) , b)

on T x T , the integral equation ‘
wi{t) =/ k(t , 1) w(t) u(dr) (t e T)
T

has only the solution w(:) = 0 in 'y .

2.2. Resolvent kernel. It follows from Assumption 2.1 (and

can be proven exactly as in [l , Lemma 7.2]) that there exists

* * 5
a measurable real matrix-valued function k = (k lj )41 , j=1,...,n
on T x T (a resolvent kernel of k) such that, for every h sv

the relations

w(t) =S kit , T)w(t)u{dt) + h(t) (t e T)
T
and
wit) =/ k(¢ , DA(DRED + ht) (t eT)
T
. . "J *i * ‘
are equivalent in ’ kj (t , 1) = kj (t) are independent of t

1)

for i =1,..m, S {f |k*(t ' ‘L')|pu(«;1t)}l/'(p - u(dr) < =
T T

*
for %=LP(T , Mo En) and S sup |k (t , 1)|u(dt) < = for
T
teTT
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? = C(T,En) .

We can now state our basic results.

Theorem 2.3. Let (y , p , b) be a minimizing solution, let
Assumption 2.1 be satisfied, and let k* be a resolvent kernel
of k. Let , be a denumerable subset of 4zcontaining o .
R*(t) = {p(t)]p € q%w} (teT , K, a convex subset of some

Eq , E € Kl , and ¢: Kl - B1 a continuous mapping with

a derivative at E and such that ¢(§) = (§l,...,§m) . Then
. ) - R 1=
either ¢, (E)E = Min ¢ (8)g
1 £ €K €

or there exist a nonvanishing X = Ql yeos A e Em and

Y 3 0. such that, setting

A= L a0

,0,...,0) = (x , 0,...,0) ¢ En R
3 R L 1 %3
z- (1) = oAk Do) 4+ A /p(T) (teT, j=1,...,n)
i=1
2(t) = (g, .., ) tem ,

Hy(r , 1) =7 tt).glt , 1, y(1) , r ,bBu@) (ter

T

and

’

’

r e K

Hy(b) = f z(t)-Dg(t,T,¥y{(1),p(1),b ;b-b)u(dt)u(at) (b e B),

T x T
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the following conditions are satisfied:

(The Weierstrass E-condition)

(1) H,(p(t) , 1) = Min H,(r ) for u-almost al
1 1 ’
r e R (1)

T in T ,

(Transversality conditions)

(2) Min H, (b) = H, (b) = 0 ,
b € B 2 2
and
(3) (Y§; = A) ¢ (E)E = Min (¥6, - Mo _(Bre ,
1 £ £ € K1 1 13
where 61 =(1, 0,..,0) ¢ Em .

In particular, if R 1is separable and }Qgcontains all
*
constant functions from T to R , we can replace R (1) by

R 1in relation (1).

3. Proof of Theorem 2.3.

*
3.1 Reqular sequences, admissible controls, the sets T

* *
and R (t ). Let |A| = / dt represent the Lebesgue measure of
A

ACT , diam(A) the diameter of A and S(A , §) the closed

o

§-neighborhood of A. A sequence {Mj} of closed subsets
j=1
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of T is "regular" at t (covers t in the sense of Vitali
(3, p.212]) if diam(Mj) +0 as j+= ,te Mj , and
|S(Mj , 3 diam(Mj))|< aIMj] (3 =1,2,...) for some a > 0.

For any u-integrable function T » £(1) from T into

*
some Banach space, let T{l(f) be the set of all the points t

*
in T such that |[f(t )] < = and

. _ *
o = lim Ty fM f(t)udt) = £(t)

for all sequences {Mj} that are regular at t*. since
o = l.im ]T]/i_r J f(r)u’(r)d'r/-r%l S u'(t)dt , it is well
e 13 M 3 M,
known (proof as in [3,Th. 8, p. 217]) that |T&(f)| = |T|; hence
u(T"J(f)’= p(T). We write Tlll(fl , f2 +e...) for
T ED AT (NN ...
If ?= Per, u; En) then it follows from Assumption

2.1 that, for all op ¢ ﬁ, the function g(p) defined by
§p) () =g+, T, y(1) , pl1) , B) (t e T)

is a u-integrable function from T to Lp(T , U o En)‘ We then

set

*
(3.1.1) T = N ©(§(p) , 4 1T° .
o0 ¥
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If ?= c(t , En) then, for all p ¢ ﬁ, the functions

gl(p) and gz(p) from T to Em , defined by

g1 (1) = g'(r , T, p(v), B) (i=1,..m7em

and

i S 5t j - =

gye)(t) =/ I k)P (t, T, y(1),plr),Blulat)
T j=1 J

(i=1,..,m,T € T)

s
are p-integrable (since ¢t~k lj(t) are u-integrable on T for
i=1,...,m and Jg(t, t , y(1) , pl(1) , B)|< ¥v(1) for all

t , T e T). We then set

* - -
(3.1.2) T = m T' (g, (p),§,(p),&1(p),&, (), ¥) /A7 T°.
oo g, IO B0 82000,
* *
Thus, in both cases, |T | = |T| and u(T ) = u(T).

* *
We also set, for each t ¢ T ,

R (t") = (oth o e @B} .

3.2 The collection JTJ and the function G. Let

N = UV @, 27t vy wo1,2,..,0% ,

kK " 0cizk (mod m?)

8>0, 10,817 = [0,8] x...x [0,8] (§ times),

- 2
Neg = (Nk/) 0,81)xf0,81* ~ 1, ana Yy (£) = $l>lg u((t+Nk,‘)ﬂT°) (k=1, g,
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We define Nk(t,oz) (te:To,k=l,...,m2 , a > 0) as

(t + N n ° , where 8 is chosen so that u(Nk (t,a)) = Min(ct,Yk(t)).

kg)
*
we set I = (N (t, wlteT ,a> 0} (k=-1,2,..,m)

and M= {4 ]k = 1,2,...,000.

We can easily verify that, whenever {aj}; =1 is a
sequence decreasing to 0, the sequence {ﬁk(t , aj)}‘; -1 is

*
regular at t for every t € T C T° and k=1,2,..,m".

.. x - A
For any fixed choice of e , plj € Qa , and bl e B

‘v .
(i,j =1,..,m) , let \7;\r(b') (as in Assumption 2.1) , and let

Q= 0(t? = (L’ |mj'j 20 (i,j=1,..,m) and the sets

St W'y are disjoint } .

ij-m+1

Wwe set p’(w”) = [p*d , N (', w*d)(i,3 = 1,...,m; p] and

mj - m+ i
define g# as in Assumption 2.l1. Finally, we verify as in

[1 , proof of Lemma 7.1] that there exists a neighborhocod

T =T, %xT, xTg of (¥ , 0°,0%) in ﬁx Q@ xJ such that the
relation

Gly, %89 (t) = £ gt (e, 1,9(1),p" W% (1) ,0%)u(dD) (t e T)
T

defines a mapping G: T ->7.

-):

Lemma 3.3. The functions (y,w‘,e’) + G(y,w‘,e

r +} and (y,w”,8%) ->Gy(y,w’,6°): T *@(?,y)

Y
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exist and are continuous. We have, for all (y,w%6%) € I' and
Ay € } ’
a o # ’ V4 0
(3.3.1) (Gy(y,w .8 )Ay) () = é’i g, T,y (1), 0" (97) (1) ,8) Ay (T)u(dT)
(t e T).

Proof. The arguments of [1 , Lemma 7.1] show that,for fixed

w?, the function (y,67) = Gy(y,u)",e"): I'Y x Ty > (5(5,7) exists,

is continuous, and satisfies relation (3.3.1). Now let wI and

a . _ L ’ .
wy, be in T :nd set My , = {t e Tfp’ (w] (t)$p (w3) (t)}. Then
niMy o) < b Iw;'_J - wéjl and, by (3.3.1),
’ i,j =1
- [ ]
((Gy (y,07,0%) = G (y,uy,0%))8y) (t) =

=/ (v o,e wh (.67
M

B2 - ghe o ()60 sy (mu@n

’
((y,mi,e") e I' , Ay e} , te T)-
For 7= Lp(T,u;En) , we have, therefore, in view of Assumption (2.1.2),
’ ¥ 8 o ~
Al 5= |(Gy(y,wl r 8 - 6 (y,uy,0 ))Ay]p < 5 2 Wl(-rr)lplﬂy(ﬂlu(dr)

My,2

where the function 1 - l\bl(','r)|p ={7s ]wl(t,T)lpu(dt)}l/P belongs
T

to P/(P -1 (T,u); hence
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A, <2 {s |ll)l(°,'r)Ip/(p_l)u(d'r)}]'—l/p .
' M2 P

Ayl .
ylp

Since ”(Ml,Z) + 0 as w£ > w;* , it follows that A1,2/|Ay]p

also converges to 0, wuniformly in (y,e') .  Thus, when
?-‘: LP(T,WiE ), the function w® » G, (y,w?,8%): I‘w*ﬂ(y' 7)
is continuous, uniformly in (y,e‘) , and we conclude that

the function (y,w",e') - Gy (y,w‘,e‘) is continuous in ?x Q x 7

For 7= c(t , En) , we have

| (G, ty,wl,0%) - G (y,05,6%)0)8y) (0) < £y, w(Du(an)-|ayl, .
y i1 Y 2 Ml 2

r

and the argument can be continued as in the previous case. QED

Lemma 3.4. Let ?= Lp(T,u;En). For fixed y ¢ ]‘y , the function
(w‘let’) - Gea(y,w’,e'); I‘m x I‘e ->.ﬁ(Em2,7) exists and

is continuous, and we have
(3.4.1) Ggaly,we,8") = S ggu (-, T,y(T) ,p" (w®),0%)u(dr) (t e T).
T

Proof. The existence of Geu (y,w’,e') , relation (3.4.1), and

the continuity of 689 » Gea(y,w",ea) follow from Assumption (2.1)

#
ge

The continuity of w® -+ GG’ (y,w?6° , uniformly in (y,e9 ,

and, in particular, the continuity of 6% > g and the bounds.
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can be shown by the same arguments that were applied in Lemma 3.3,

with Geo replacing Gy’ QED

Lemma 3.5. Let y= LP(T,u;En) and let 07 be the origin
of E 2 . Then the function (y,0%8%) ~ Gly,n”%,8%): T + ? has

a (total) derivative at (3_/,0',0') (relative to T'), and
(3.5.1) 6,13 (F,0%,0%) = g(-,t13,5(id) o (el By -

- g, 61,5 5 etdy B in 7
Proof. If follows from the bounds in Assumption (2.1.2) that

T > |9#(-,T,y('r),p’(w‘) (t),8%) Ip is p-integrable for all

(y,w?6% €T . Thus

6(7,0%6% = f ot 1, 700,0" WD (1),89 @) in y
T

and
|
i _ ° e e A m _ . _
| Gly,u0") - 6(y,0,0) = £/  (g-,T,¥(t),0 7 (1),B) -
llj=1 M]_J
- g, T,y(1),p(1),b))u(dr)
_ ij, _ ij 1ij C s .
for Mij = Mij(m )—ij-m+i(t ,w %) {i,j=1,..,m). Since,
s > » M o .
for each fixed i and j , the segquence {Mij(ak) }k=l is
regular at t'J if o, > + 0, the Mij are disjoint, B et and
u(ﬁi_j)=u(Mij) = w'd for sufficientlyv small wi](i,j=l,..,m),
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relation (3.5.1) follows directly and we also conclude that

w? > G(y,0w?,0% has a derivative at 0%.

Since, by Lemma 3.4, (v*,8”) ~ Gen()_r,w',e"):l“w x Tg +9(Em2,;)
is continuous and there exists a convex neighborhood of
(0",0') relative to I‘w x l“(3 , we conclude that the function
(02,09 » G(y,u%,8%) has a derivative at (0%,0%). Finally,
by Lemma 3.3, (y,w®,0°%) » Gy(y,w',e"): r +ﬁ(y,j) is

continuous; hence {y,w?,08%)+G (y,w%6%) has a derivative at

(;ronrou)' QED.

3.6 Proof of Theorem 2.3 for1= Lp(T,E“) (l<p<e=).

By Lemmas 3.3 and 3.5, the function (y, 0?02 > Gly,w%,0%):
r -» ? has a continuous partial derivative with respect to y and
a (total) derivative at (3_7,0’,0') . Furthermore, Assumption (2.1)
implies (see [l,Lemma 7.2] for details) that I—Gy(§,0°,0’) is

a linear homeomorphism of y onto 7 and that

(3.6.1) (x—ey(fr,o',o"))'l =1 +K,
where

* * .
(3.6.2) (K'ay) (£) = [k (t,1)by()u(dr) for all t e T and by ef

It follows then from a variant of the implicit function theorem

{using essentially thc same arguments as in [4,p. 265]) and from
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the representation of Gy’GG‘ and Gwa in Lemmas 3.3, 3.4,

and 3.5 that the equation
y = Gly,w?% 8%
has a unique solution n(w%,6%) = (nl(w',e‘),...,nn(w‘,e’))

in %/ for all (w‘,e’) in some neighborhood A of (09,05)

F
in T xT such that the function (w%,0% - n(m",e ) is
w 0

continuous in A and has a derivative at (0‘,0’) , and
a o - ...l i'_ PR P I -
(3.6.3) nyi3 (%07 = (1-6,(7,0%,0%) g (-, €77, g (et )t 61y By

- gL, 5t 5wt by,

(3.6.4) ngij(0”,0% = (-6 (F,0%,0° ) s ofi i1 F (0,500
¥ T

for 1i,j=1,..,n.
Now let a function (p,b) = p,b): jl x B + E.
be defined as follows:
if the equation

y(t) = [ g(tlTIY(T)lp(T),b)U(dT) (t e T)
T

has a unique solution y(*) in ;f, we set
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x(p,b) = (yl,- coy™

(remembering that yl (i=1,..,m) are then independent of t);

otherwide we set
-1
x(p,b) = (y~ + 1,0,...,0).

* * * *
We also set, for all t € T , j& (t ) = 5?w .

: m s . s
We observe that, in particular, xl(p’(wa),g + E j_lelj(blj—b)
3=

= nt(w?6% in A (i=1,...,m).

We can now verify that (p,b) yields the minimum
of xl(p,b) on {(p,b) € ?3 X Blx(p,b) € By}, that (T*,ji*,u”1
define "local variations for x in jz x B at (p,b)"
according to [2, Definition 2.1, p. 644], and that Theorem 2.2
of [2, p. 644] is therefore applicable. Furthermore, definin

Dx(p,b;t*,r) as in [2,p. 643] , we have

] - - * i * * *
(3.6.5) px' (p,b;t ,x) = n;]’l(o",o") (i=1,..,m,t e T, reR

* *
where n is defined by choosing tLl =t , p%l such that le(t ) =1

and the other tlj,plj and b7 arbitrarily; and

(3.6.6) Dx" (5,5:bB) = ng11(0”,0%) (i=1,..,m,b € B),

l’l.b and t‘,pﬂ and the

where 1 is defined by choosing b
other b'J arbitrarily. (The symbol Dx*(p,b;b) in the notation of [2]

corresponds to Dxl(E,E;b—E) in our present notation).
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It follows, by [2,Th. 2.2, p. 644], that either
the first alternative of Theorem 2.3 is valid or there exist
a nonvanishing X 1in E, and Y 3 0 such that condition

(3) of Theorem 2.3 is satisfied,

- - * * * * *
(3.6.7) ADx(p,b;t ,xr) 3 0 for all t € T and r e R (t ),
and
(3.6.8) A+Dx(p,b;b-B) >0 for all b e B .

Relation (1) of Theorem 2.3 now follows from (3.6.7),
taking account of (3.6.1),(3.6.2),(3.6.3), and (3.6.5).
Similarly, relation (2) follows from (3.6.8), in view of relations

(3.6.1), (3.6.2), (3.6.4), and (3.6.6).

It now remains to verify the statement that R*(t*) can
be replaced by R 1if R 1is separable and ﬁ contains all
constant functions from T to R. In that case we can choose as
fm ﬁ%‘/wgﬁf?géeofﬁ containing p and a set of constant functions
from T to R whose images form a dense subset of R. Then
F_l*(r) = R for all =<t ¢ T* and, since r »+ Hl(r,T) is continuous

for all 1 e T, we conclude that Min Hl(r,'r) = Min Hl(r,r). Q1
r e R (1) r € R

3.7. Proof of Theorem 2.3 for y= C(T,E ). The proof of Theorem 2.3

for y= P (T,u;En) partly relied on the observation that

G(y,w",e") is the u-integralover T of the function
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T > g#(-,T,y(T),p(T),e"): T ~» y For 7= C(T,En) this need
not be (and in most cases of interest is not) the case since
g#(.,-r,y('r),p('r) ,9’) is not assumed continuous for fixed

t and 6% . We can circumvert this difficulty, however, since
we are primarily interested in the first m components of vy,
and (yl,..,ym) is constant for every solution y of

y = G(y,w’,ev) . This remark motivates the ensuing arguments.

By Lemma 3.3, the functions G and Gy exist
and are continuous on [I'. It follows, therefore, by the implicit
function theorem, that the equation

Yy = G(Ylm‘le‘>

has a unigue solution n{w ‘,9 ) in '7for (0w*,06°) in some

neighborhood A of (0%,0°) in r, x Ty and that (0®,0%) + nlw”?0®
A > y is continuous.
— * -
Let K = Gy(y,Oﬂ,O'), K = (I-K) l-I, and let Pm
. s 1 n _ 1 m
be the projection operator (a ,...,a ) = a ~» Pm- a= (a”,..,a ):
E > E_ .
n ™
. o .o * = a .0
Lemma 3.7.1. The function (w%,8%) - Pm' (I+K ) +G(y,w",07):

A > E_ has a derivative 9= (m,..sm) at (0%,0%) , and

3.7.1.1) w2, =udti 70,50, 0%u@n + 5 x -
T 8 TxT

# Sy = " o
ggf (E,7,y(1),0(7),0M)u(dt)u(dr)) -8 +
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m . .
B g1 (ot T B B+ ka*l(w-

k

- - - N g
g(t, €%, 7 &), 5 By @ w1, mutE o,0% E ),

i

*i *
IRARE

*j
where k= = (k )

'kn'

* -
Proof. We set H(w?, 8% = Pm-(I+K )-G(y,»* 8% and verify that

1l w?6% = 5 oM (1,500 ,07 (w") (1), 0% uian) +
T

1 et T 000 W) (1), 8% 0t (an)
TxT

Assumptions (2.1.1) and (2.1.2) imply that (w?,6°) - He.(m‘,e'):
A »ﬁ(Emz,Em) exists, is continuous, and
Hea (07,07 -0 = (0%,67),

where ﬁ is defined as in (3.7.1.1).

We also observe that

. . o — L ) )
gt w”,0% - w0’ ,0) = £ s (gt (1,5 (1), o®* (1), B) =g (1,7 (1), B (1) ,B) ) (
k,2=1 2
o *i - k2 = - - -
+ z Joow@n) s k ey (gt T,y (T e (1) ,B)-glt, T,y (1) .0 (T),B))u(at),
k,2=1 MkIL T

1los
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where =N (5% WK%Y | since tF e T" for k,t=l,..,m
Mkl mi-m+k ’ ¢ rX=d,..,,

L]
it follows from the definition of T that Hw.(Op, 0’) exists and

Ho (07,07 0% =d - %07,

We conclude that H 4 g4, (0°,09) = J. QED.

Lemma 3.7.2. There exists a constant ¢ such that

sup|G(y,w?,8%) (£) - y(t)| < c(Ju?[+]07])
teT

for all (w?,8%) sufficiently close to (0%,0°).

Proof. We have §(t) = G(§,0°,Oﬂ) (t) (teT) and , for all t € T,

l6(F,0%,69 (k) - y&)|<|r @i, 500,07 W) ,07 - gt (£, 7,7 (1), 07,0
T
u(dn) |

m
s gt n e, m L, 0% - gty @, 5,0 @ |

k,2=1 Mk!L

= a+b ,
_ k% ki
where M , =N o .. (t™7,w 7). We observe that

a < Spvlt)uar) - 16%]

because |gga(t,r,§(r),r,e )| < ¥(1) everywhere, and that
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b <2 Y (T)u(dr)

z f
ko 2=1 kg
because Ig#(t,T,§(T),r,b)|< Y(t) everywhere. The conclusion of

the lemma now follows directly, remembering that

cim g vmuEn = v el m
w0 w Mkl

*
since tkl €T C'ré(w) (k,2=1,..,m), QED

3.7.3 Completion of the proof. We now observe that, for

w= (%08, 0°= (0707, and for all we 4 ,

nw) - G(y,w) = Glnw), w) - Gly,w) = Gy nw) ,w)-(n(w) - y);
hence

W) - ¥ = (1 - G, () W) TG ,wW) - G(¥,07)), where

Aw) € 17, n(wnC;. Thus

(3.7.3.1)  B_.( ntw) - n(0’) - (I+K)-(G{F,w - G(F,0))

- . _ - -1_ - S aryy-1 5
=P. (((1 Gy( niw) ,w)) (T Gy(Y,O ) T)Y(Gly,w)
- G(y,0"))).

Since w > nf(Ww) is continuous, and so is, by Lemma 3.3,

(y,.w) > Gy(y,w), it follows from Lemma 3.7.2 that the right

hand side of (3.7.3.1) is of{|w|). Thus, in view of Lemma 3.7.1,
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the function w - Pm- n({w) has a derivative at 0’ and

( nl,.., nm) ° 8 (0°%0% = (Pm-n)w(o') =P - (I+K*)-
(w™,0)

where p is defined by relation (3.7.1.1).

We can now complete the proof of the theorem exactly

as we did in 3.6 for /= Lp(T,u;En). QED
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APPLICATIONS OF HAMILTON-JACOBI THEORY
T0 PLANAR TRAJECTORY OPTIMIZATION®

By S. X. Lakhanpal
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Nashville, Tennessee

SUMMARY

The purpose of this paper is to study the application of Hamilton-
Jacobl perturbation methods to the determination of the minimum fuel
trajectory of & rocket moving in a plane under a central gravitational
force and the thrust of an engine. First, a brief survey is given of
the needed theorems from the calculus of variations and Hamilton-Jacobi
theory. The problem is then formulated snalytically and the multiplier
rule and Welerstrass condition applied. The Hamiltonian is separated
into base and perturbation parts. Two methods are given for obtsining
a complete integral of the Hamilton-Jacobi partial differentisl equation
for the base Hamiltonian. Jacobi's Theorem is applied to give a system
of canonic constants for the base problem. The procedure for using these
constants as canonic variables in the perturbing Hamiltonian is then
developed.

INTRODUCTION

Many trsjectory optimization problems are of the Mayer type in the
calculus of variations, the classical theory being easily extended to in~
clude control varisbles. (See, for exemple, Hestenes, Ref. [1 or 2]).
With differentisl constraints in normel form, the multiplier rule gives
equations of extremals as canonical equations of a generalized Hamiltonian.
Jacobi's theorem then gives a method of solution based on finding a com-
plete integral of a partial differential equation. This theory is
summarized briefly, without proofs, in the first part of this paper.

Low thrust rocket trajectory problems sre analogous to perturbation
problems of planetary theory, the thrust of the engine being considered
as the perturbing force, William E. Miner [3] hes developed this method
extensively for three dimensional trajectories. The obJject here is to
consider the simpler planar case and to study alternative methods of solv-
ing the partial differential equation of the base Hamiltonian in an effort
to discover some simplifications.

#Mhis resesrch was supported by NASA Research Grant NGR-43-002-015 and was
done under the direction of M. G. Boyce. A part of it was included in the
author's mester's thesis in mathematics at Venderbilt University.
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A planar rocket trajectory problem is formulated with end conditions
allowing for various missions, including rendezvous with a satellite in a
coplanar orbit. The base Hamiltonisn is taken as the part not involving
thrust. The partial differential equation for it is linear, and our first
solution uses Lagrange's method for obtasining a complete integral. Jacobi's
equations determining original variebles in terms of canonic constants are
used to eliminate the original variables from the perturbing Hemiltonian,
the canonic constants becoming new generalized coordinates and momenta.

The canonical equations of the new Hamiltonian are then the differ-
ential equations of the extremals.

The second method of solving the partial differential equstions for the
base Hamiltonian is to first transform it by a canonical transformestion of
variables and then use Jacobi's method to find a complete integral. The
procedure described above is then repeated.

HAMILTON-JACOBI THEORY
Mayer Control Problem

The Mayer problem of calculus of variations involving control variables
may be expressed in the following form.

The problem is to find in a class of admissible arcs
yi(t)’ uj(t)) to <t < tly i=1, ¢vo, n, =1, ¢e-, m,

satisfying differential equations and end conditions

Yy = fi(t:Y:u);
Jk(tO’Y(to)’ tl’ Y(tl)) =0, k=1, «+¢, p<2n+2,
one which will minimize a function

Iy, v(ty)s £, yle ) .

Here, in the arguments of the functions, y denotes the n-vector

yl, cee, yn and u the m-vector ul, oo, um .« The super dot denotes

derivative with respect to t . Partisl derivatives will often be denoted
by subscript varisbles and summation by the tensor analysis device of re-
peated indices. In this study admissible arcs will be arcs whose elements
t, ¥, &) lie in 2 given 2n + 1 dimensional open region R and whose
control varisbles u are in an open region U . The end points
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(to, y(to), t y(tl)) of admissible arcs are required to lie in an open
set S, and y, ¥y, u are continuous functions of t. The given functions
fi’ Jk’ Jd are assumed to have continuous partisl derivatives in their

arguments to as high as second order.

First Necessary Condition: Multiplier Rule

The classical first necessary condition can be stated for the Mayer
problem with control variables in the following form. [4]

Theorem 1. An admissible arc E 1is said to satisfy the multiplier rule if
there exists a function

H(t,y,u,n) = yTy, 1 =1,2,ee0,n,

where 's sare functions of t not simultaneously zero and continuous
along the arc E, such that the equations

(l) i- =H ) }.'.= -H » H =0 3 j:l,---,m,
i Yy i N u:J
are satisfied, if the end point conditions Jk =0,k=1, *++, p, hold,
and if the transversality matrix
H(t ) +J -H(t ) + J () +J A (B )+ T
\ ol T Tt N 1ol Tty () M Ty (e)
d. d. dJ. d.
Kt kt, Ky, (t) ky, (t.)

is of rank p. Every minimizing arc must satisfy the multiplier rule.

Solutions of equations (1) are called extremsls, and equetions (1)
are called the cenonical equations of extremals. They are the Buler-
Lagrange equstions for the problem, and the function H is analogous to
the Hamiltonian of mechanics. If, for admissible srcs, y and u are
assumed only piecewise continuous, then Theorem 1 holds between corners
of E.

Weierstrass Condition

The Welerstrass condition for the Mayer control problem csn be
stated as follows. [4]
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Theorem 2. Along the minimizing arc E, the inequality
H(t:Y))\:a) < H(t:y’)\;u)
must hold at each element (t,y,x,u) of E for every u in U.

Thus H(t,y,\,u) is a maximum with respect to the control variables
for a minimizing arc, for which reason this condition is often called the

Maximum Principle.

Elimination of Control Variables
An arc along which the determinant l Hu uhl # 0 1is said to be non-
J

singular. It will be assumed that all arcs considered are non-singular.

The equations Hu = 0 can then be solved for the control varisbles in
J

terms of multipliers and state veriasbles, and control variables can be

eliminated from the Hamiltonian. This will be supposed done, and the
Hamiltonien will be written as

H*(t:y;)\) = H(t;Y:u(t}y’x)J)\)‘

It follows that the canonical equations of the extremals can be ex-

pressed in terms of . For, if the equations

Hu:':O: J=1,0+,m,

of the set of equations (1) can be solved for uy = uj(t,y,x), then

B =H +H ,
;o vy 5 9y
B =H +H N
LR 5 I

Since Hu = 0, it follows that
J
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* 3t
H =H and H = H)\
Vi Yy Ay i
or §. =H =8
Ty N
and ii = H =-E* .
Ii Iy

Heresfter H¥(t,y,)\) will be denoted by H(t,y,\) because of the equiva-
lence of the two Hamiltonians.

The Hamilton-Jacobi Equation

The partial differential equation of first order
(2) St + H(tJy:sy) =0,

is called the Hamilton-Jacobi equation. It has dependent variable S and

n + 1 independent variables t,yl,---,yn . The complete solution of (2)

will have n + 1 arbitrary constants. However, one is additive and is of
no importance here, so we shall consider a solution with n independent

constants, no one of which is additive, to be a complete solution.

Theorem 3. Let the Hamilton-Jacobi equation (2) nave the solution

S = S(t,yl,---,yn,al,-'-,am) depending on m (< n) parameters CRLREREN

Then each derivative Sa is a first integral of the canonical Buler

J
equations system
}.’ =H ’ .;\ = -H ’
i A i ¥
that is, S, = constant along an extremsl.
J
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Jacobi's Theorem

Theorem 4. Let S(t DA ,yn,Otl,- .. ,Otn) be a complete integral of the

Hamilton-Jacobi equation (2), that 1s, a solution depending on

n-parameters & ,¢¢¢,& and having the n by n dJdeterminant |S % 0.
1 n oy
i'h
Also let Bl,"',ﬁn be n arbitrary constants. Then the functions
(3) vy = yi(t’al""’05’51""’Bn)’ i=1,-e0,n
defined by the relations Sa = Bi’ together with the functions Xi = Sy 5
i i

constitute a general solution of the canonical system

J.=H , X\, =-H , i=1,---,n.
17 %y i ¥y

For proofs of theorems 3 and L see [5, p. 90].

Hemilton~Jacobi Perturbation Theory

In celestial mechanics the path of a planet is disturbed by the pres-
ence of other heavenly bodies. This disturbing force is very small compared
to the attraction of the sun. The Hamiltonian is expressed as a sum of two
parts; the one which corresponds to the motion of the planet without the
disturbing influence is called the base Hamiltonian, and the one correspond-
ing to the disturbing factor is called the perturbing Hamiltonian. The low
thrust rocket problems in trajectory analysis can be treated in a similar
way, the thrust of the engine being considered as the disturbing factor.

The following theorem shows how to obtain a complete integral of
order n of the Hamilton-Jacobi equation for the base Hamiltonian in case
it involves fewer than n %\'s [6, p. 29].

Theorem 5. Let H(t,yl,"',yn,xl,---,xn) be the Hamiltonian for a
dynamical system. Let Ho = Ho(t,yl,-",yn,xl,---,xk), where k < n, be
the base Hamiltonian and let S*(t,yl,---,yn,al,"-,ok) be a solution of

the Hamilton-Jacobi equation for Ho depending on k independent para-

*
s
Yi%

#0,i,5 =1,2,-++,k. Then

meters (al,---,ak) with
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ey
S = 8% (t,y Lot oy ) } %y,
i=k+1
where (O(kﬂ_,"-,an) are independent parameters, is a complete solution of
order n for the base Hamilton-Jacobi equation.

From Theorem 4 it follows that

(%) B, = 8y Ao=S. 1=1,e0-,n.

We solve these equations for y's and \'s in terms of Q's and B's,
thus y, = yi(Ot,B,t) and ) = )\i(a,B,t), end substitute these values in

the perturbing Hamiltonian, say Hl. Now Hl is expressed in Q's and
B's as variables.

On considering S to be a generating function for a canonical trans-
formation with Q's and PB's as new variables, it follows that the new

Hamiltonian is S + H, (5, p. 79]. But

S, +H=8 +H +H, and S +H =0

when S is a complete integral of the Hamilton-Jdacobi equation for the
base solution. Hence the Hl is the Hamiltonian for the total problem

in terms of the variables Oti, Bi ;3 and the canonical equations for
extremals in these coordinates are

& =H

1 1Bi ’ By=H .

1 1.
1

The solution of these equations gives the extremsls for the problems with
2n constants of integration [6, p. 27; 7, p. 137]. By the use of the
set of equations (h) we can express the trajectory in terms of y's and
t. This theory can be extended to splitting the Hamiltonian into more
than two parts.

Canonical Transformation
Suppose the vaeriables y's and )\'s are transformed to new vari-

ables q's and p's. If the trensformation has the property that for
every Hemiltoniasn H(t,y,\) there exists a function K(t,q,p) such that
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. _ 3K . =3k

Q=37 p = 1i=1,-4,n,
3 qu

then the transformastion is canonical.

Tt is assumed that the trangformstion has a non-vanishing Jacobian

0 I
oI g of order 2n, then the nec-

n

M. Let N denote the matrix

essary and sufficient condition that the transformation be canonical is

thet MIM = cN, where c is s non-zero real number. [8 ].

PLANAR TRAJECTORY OPTIMIZATION PROBLEM

A rocket moving in a plane under a central gravitationsl force and
the thrust of an engine is to achieve a specified mission starting from
a given initial staste. The variable angle of thrust, which is a function
of time, is the control variable. It is desired to find the equations
of the path requiring the least amount of fuel.

Assumptions

The path of the rocket is assumed to be in a plane, and hence a polar
coordinste system is used, with origin at the center of the earth. The
coordinate system 1s fixed relative to the earth and the gravitational
force on the rocket is assumed directed towards the origin. The rocket is
considered as a particle of variable mess. Air resistance is assumed
negligible and thrust magnitude to be proportional to a constant rate of
flow of mass.

Equations of Motion
Let (r,8) be the polar coordinates of the rocket, @ the angle
between the radius vector and the direction of thrust, F the thrust magni=

tude, m the mass, c the constant rate of mass flow, and k the
gravitational constant. The equations of motion can then be expressed as [9]

T - r&®=-k/r2 + (F/m) cos @,
() r6 + 280 = (F/m) sin Q,
m = -c.

The theory of the Lagrangian

L= (#® + r?%¥)/2 + k/r,
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for the unit mass two-body problem without thrust, suggests defining
u = dL/3t, w = 3L/3e.
Thus u=7%, w=r39,

end u is redisl velocity, while w 1is rv, where v is tengential
velocity. The equations of motion (5) then become

f=23
1]

w2/r® - k/r® + (F/m) cos Q,
(r F/m) sin @,

.
=u,6=w/r2,m=-c.

o
]

(6)

He

Let the initial and terminal conditions be denoted by J.. = 0, K=1,+<,p
< 12, 1in the notation of the genersl problem in the firgt pert of this
paper. For e minimum fuel trajectory, the function to be minimized can be

expressed as J = m(to), with m('tl) a given constant. If the initial
position and velocity are given, we have

leto,Jzzu(to)-u J3=w(to)-w J =r(t)-ro,JsE'6(to)-60.

o’ o’ "4 o

For terminal values, Js = m(tl) - ml, and the remaining J's would be
functions of t , u(tl), w(tl), r(tl), m(tl)-
Fliminstion of Control Variable by Welerstrass Condition

The Hemiltonian for equations (6) is

H= )\l(we/r3 - k/r2 + (F/m) cos @) + )\Z(rF/'m) sin @ + ) u + Aqrw/r2 - er s

where the )\'s are functions of t not simultaneously zero.

From the Welerstrass condition, H, as a function of {, must be a
meximum. Hence H, = -)\l(F/m) sin & + )\Zr(F/m) cogs @ = O and

Hyy = -)\l(F/m) cos O -)\Zr(F/m) sin@< 0.

It follows that

ten @ = a= 2 + 122 a= 2 4+ 52
an @ =1 /A 81 @ = A NOZ +2%2) , cos WALSEESW:
the radicals being positive because of Hoxx <0.

Elimination of @ gives H = Ho + Hl , Where
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_ 2/3 _ 2 2 _ i 2 2,2
H = xl(w /r x/r?) + AUt w/r er and H (F/m) kal + 12).

The Hamilton-Jacobi equation for the base - Hamiltonian Ho then is

(1) »s/at + (w3/r® - k/r?) 3S/au + ws/ar + (w/r®) 38/36 - cas/om = 0.

Determination of a Complete Integral

In seeking a complete integral, apply separation of variables, letting

S = Sl(t) + 82(6) + Sa(m) + S4(u,r).

The Hamilton-Jacobi equation assumes the form

dSl/dt + (W3/r® - x/r?) as4/au + uas4/ar - (w/r®) dSZ/de - cdSs/dm =0,

which does not involve t, 6 and m explicitly. Hence
ds /dt = & as /ao = & ds /dm = O
l/ l, 2/ 2’ 3/ S’
where al’ az’ 0; are arbitrary constants.
The Hamilton-Jacobi equation can now be written as

(8) w*/r® - k/r?) aS4/au + uaS4/ar =c0 -a - O;w/rz R

which is in the form of Lagrange's linear equation Lo, ¢ch.X11],
subsidiary equations are

au ar asg
w2/r® - x/r? u @ -0 - Otzw/r2
From the first subsidiary equation we get
(9) v? - 2k/r + w3/r® = -2%,

which we write as

f=-a®,
2

and its

where -a ig a constant of integration with the sign chosen so as to give

a periodic trajectory.

On substituting from the sbove for u in the last subsidiary equation,

we have
as o ((e% - o) r® - ow) ar
4 1 N-8°r® + 2kr - W
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the smbiguous sign of the radical being absorbed in the arbitrsry constents

a,a ,a . Integration now gives
1”7 27 s € &
A . -1 8°r - Xk e - w?
§ === -a%r2 + 2kr - w2 +A—k51nl? - sintEE
4 a2 &3 E - a2l 2 N
+ b,

where b is a constant of integration and A = cOt3 - Cll .

On eliminating a by use of (9) and introducing the gbbrevisting notations
X2 = w? + 2kr - u®r?

Y2

It

(kr - w2)2 + vBr™F
7Z =kr - w2 ,

Wwe can express S4 in the form

Ar® k . -1 XP-kr -1 %
S4_x2 (-u+X sin 7 ) -a sin T *thb,
or S =g+ b.
4

The general solution of (8) will then be
olf, S4 -g)=0
where ¢ is an arbitrary differentiable function. It follows that
S =g+af+a
P 4 s ’
where @, and Qg are arbitrary constants, is a solution end may be teken
as a comfPlete integral of (8). By adding Sl, SZ, Se’ S4 we now obtain

sn integral of equation (7). As explained in the general discussion of
Hamilton-Jacobi theory, the additive constant Ots may be dropped. Also,

by Theorem 5, the term Clsw can be gdded to give, finally, as & complete

integral of the Hamilton-Jscobi equation (7) for the base Hemiltonian
Ho , the following
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a X2

r2

3 2 . -
éi'—(—u + % sin™t 3;—?—53) - sin™? % -
x2 2

S=0t +06 +Qmnm + + dw.
1 2 3 [
The Remeining Canonic Constants

By Theorem 4 (Jacobi's Theorem), if S 1is & complete integrsl of the
Hamilton-Jacobi equation, then there are constants Bl, oo, ﬁs such that

aS/aOE = Bi . On carrying out the differentistions on the above S, we

get
B. _ 2 k . ~1%X -kr
1=t = = (~u +  sin 7 )
62=6-sin'1% ,
2
B =m+ - (-u+ K gin™? Z—~ir—-9= m=-c{B -1t)
3 x2 1
= X2/p2
B, /T
B =w.
5

The Multipliers

Also by Jacobi's theorem the 3's are equal to the partisl deriva-
tives of S with respect to u, w, r, 8, m ; and the equations so
obtained together with the above equations determine a ten-parameter
family of solutions of the canonical equations for the base Hamiltonian
HO . On letting B denote

X2 + g p2
45
we find, after some simplification, the following results:

- 2 2 2 - -
A, = lers, - p2/r + (wB_ + k) wBZ/rB] /8% + (20 - 3A(t - B)/B )u

2
+ (r - p2)op_/rB,
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>
1]

2n2 2
lur - 38, (¢ - B,)] A8 5/r B2 + 2a4es/r +a_+ [A_(rB, - k)

+ otzﬁi(rk + Bz.)’] u/rBi B,

The multiplier )\3 can be computed in the same way as )‘1 and )\2 >
but it is not needed for Hl .
The above computed )‘1 and )\2 are expressed as functions of 's,
B's, u, and r. The variable u can be eliminated, since from 64 = -)(2/r2
and X2 = - Bz + okr - u?r® we get
u2r2=8r2+2kr-£32 .
4 s
Also we have, from the ﬁs equation,

m=Ba-c(t-Bl).

The Hl Hamiltonian
The perturbing Hamiltonian Hl = (F/m) in + re)\i can now be ex~

pressed as a function of Q's, B's, r, eand t, and r is a function of

B's and t by means of the equation for Bl . As explained in the first
part of this paper, I-Il is now the Hamiltonian for the total problem in
variables Cli 5 Bi , t. Consequently, the canonical equations for the

extremals in these varisbles are
& =3H /3B,, B, = ~ 3H f3a, .
i 1/ 1 > i ]/ i

More explicitly, letting A =A° + Xi ,
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24 . 2
Fyx /38, +r A0 /3B + rafar/ap )
\(B, = clt =B ’

- cFy
* (B~ clt - Bl))z

[0 +

2 2
& - ) F(xlaxl/asa +r xzaxz/asa + rxzar/ags)

= + ,
3 2 - -
(B, - clt -B)) Ae, - et -8))
2 2
: F(xlaxl/asi +r xzaxz/aﬁi + rxzbr/aﬁi) sy
% = "B - clt = B.)) pi=2,%05 ’
3 1
2
. - PO feoy + T fe) y
By = NCOETICETD)) »1=1,2,3,4, 5.
3 1

Since xl and ) are linear in the &'s, the differentiations in the
2

right members of the B equations are easily carried out. However, this

is not possible for the & equations.

The solution of the above system of differential equations gives the
optimal trajectories of the rocket in terms of Q's, B's, t and ten
constants of integration. Closed form solutions do not seem possible, so
approximation methods by some type of iteration on r seem necessary.

A SECOND METHOD FOR THE PLANAR PROBLEM

This method involves a canonical transformation of variables and
leads to a complete integral of the base Hamiltonian. As before, the
perturbing Hamiltonian, with the canonic constants as new variables, be-
comes the Hamiltonian for the total problem. The resulting canonical
differential equations of extremsls are somevhat different from those of
our first method, but they again involve similar inherent difficulties
and do not lead to closed form solutions.

The Canonical Transformation

Let the following transformation be made, where the q's denote
the generalized coordinates and the p's the generalized momenta.
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A, =d s “u=p
wo=a, A, =P, s
ro=aq, L T
6=q4 ; A, =P,
LI B W =P

This transformetion is easily verified to satisfy the necessary and suffi-
cent condition for a canonical transformation as given in the first part
of this paper.

The other transformationsconsisting of interchange of coordinates
and momenta have been investigated. Changing r to a momentum variable
greatly complicates the Hamilton-Jacobi equation. Changing 6 has little
effect on either the base or the total Hamiltonien. Chenging u only,

or u and w , or u, w, and m to moments give essentially the same S
for the base Hamiltonian as does the above transformation.

A Complete Integral of the Base Hamiltonian
In the new variables, Ho assumes the following form:
H = (a2/62 - k/a2) - + 2 _ .
o = qla /e, - Kal) ~pp *pa/i - cq
Hence the Hamilton-Jacobi equation is

o + 273 _ 2y . 2 _ -
(10) 8y *+a (af/a - k/aZ) - oo +pa/d cq = O,
where Si, D, D_, p, Tepresent 3s/3t, as/aql, aS/aqa, and as/aq_4 ,

respectively. A solution of the above partial differential equation can
be obtained by ‘Jacobi's method [11].

as dp dp dq

t_ T4 _ __3
0

0
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t

The first two terms give S, = 35/d3t = @, p, = as/aq‘L =a, and the last

two give

a
L

2/.3 2
- d .
(r12/<1s k/qa) a,
On integrating this we get

2= _QZ 2 - 2 2
7 = (-0 a¥ kg, qg)/tl3

= . W= +J0f g2 + -q2 .
or 1 w/q:3 where + C 2kq3 aQ,

The constant of integration, -ai , has been chosen negative to give a
periodic solution.
When the values for St’ pl, p4 are substituted in the equation (10)

and the result solved for Ps’ we get

o - aq -k 2

P, - s _ ( 1 cqs)qs + a2 4 + 4,9
W .

Bqa q3 q:W

kg - ¢Z
+ sin-l 3 2
- 4

fE . & o2
qsk s %2

The solution of the partial differential equation (10) is obtained
from the exact differential

as = (a8/st)at + (BS/Bql)dq_l + (BS/qu)dqa + (BS/aq4)dq4 .

However, q and qs need to be included as independent variables in
2

addition to t, ql, qs, and q4; so, by use of Theorem 5, together with
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the above results, we get

Q. @ -cq k(@ - cq) ®q -k
S=at+0aq + (..& JE S——-1 W+ 1 5. gip™! 23
1 44 a, o2 o8 Ji2 - B2
3 3 32
=4
+a sin"t ¥y T % +aq +0q
- 4 22 55

JiZ - 22
qS k 3q2

as a complete integral of (10) involving five paremetric constants, the
additive constent being ignored. Note that the term qlW/qs oceurs

twice in the integrations but is counted only once in S.

The Cenonicel Constants Bi and Momenta Py

By Jacobi's Theorem, as/ac:zi = By, with arbitrery B; . Let

C=0a -cq_, D=Jk2-o§qz .

1
Then
B, =t - W2+ (k/07) sin"*(cfq_ - k)/D,
B =a .
B, = 3C(t - 51)/as - cw/a‘; - asq_lqs/w + qsc/asw + kqu/Q‘:W
+ & + & aq )(ky, - a2)/00WD%,
B, =9, *sin (kg -a%)/aD,
Bs =q, -

Where smbiguous signs occur sbove, the top sign is to be teken if W is
chosen positive, otherwise the lower sign.
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Since p; = as/aqi , 1t follows that

p =Wa_,
p, =@ +[C/0f - /g + (kC/AZD® + @ k/q D?)(oFq_ - k)
- a,/a 2a /W),
P, = 4,0/ + (@a - ke )W +qaZ/adi , P,=%
p_ =0+ cW/GE ¥ (ke/o) sin™ (oBq_ - k)/D = a +ef(t-8).

The Hamiltonisn Hl

Applicastion of the canonical transformation to the original Hl gives
H = (-F N + pP® .
L= (F/p ) Naf + pZdf

To express Hl in terms of a's, B's, t and qa, we find from Bz = q2 ;

™
]

a_ - and the BS equation that

Q
]

2 2 2
3¢t - 8)) - @B - CW/eE + qZc/W](W/ofa)+ [kq CD% + (k%C + oo p )

2 2
(kq_ - B5)1/0%q D%,

where now C=Q «cf , D= N PR W m + Jp2 + okq - 0Zg7 .
1 5 3 2 - 2 3 33
This value of ql substituted in the formulas for p2 above gives

- - 2 - - - 2
po=0 -Q/W+ B, OW/q? kBZC/a;qsw +lapp, -36Ct - p )]/0%2

2 2 2 2
+ [ajkqs(azc vofa )(ofq - k) + B (k%C + o )(ka - B2)]/qZD%W .

By using the expressions for p , ql, and ps as above, we can
2
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reduce Hl to a function of Qa's, B's, qa, and t. By the equation for
Bl, q:3 is an implicit function of Q's, B's, and t. Hence Hl becomes

a function of O's, B's, and t, and is then the Hamiltonian for the
total problem. The canonical equations of extremals giving the optimal
traejectory can then be obtained as in the first method. The analysis again
is very involved and does not lead to closed form solutions, so we do not
proceed further here. For snother treatment of this problem one should
refer to W. F. Powers [12], The sez_arch for cenonical transformstions
which will give simpler forms for ai and Bi should be continued.

133



5.

10.
11.

12.

HAMILTON-JACOBI THEORY APPLICATIONS

REFERENCES

Hestenes, Magnus R. A Genersl Problem in the Calculus of Variations
with Application to Paths of Least Time. U. S. Air Force Project
Rend Research Memorandum RM-100. Sante Monice, Calif.: Rand Corp-
oration, March 1, 1950.

Hestenes, Magnus R. Calculus of Variations and Optimal Control
Theory. New York: John Wiley end Soms, Inc., 1966.

Miner, Willism E. The Equations of Motion for Optimized Propelled
Flight Expressed in Delannay and Poincare Variables and Modifications
of These Variables. NASA Technical Note NASA TN D-LL78. Washington,
D. C.: National Aeronsutics end Space Administration, Mey, 1968.

Boyce, M. G. snd Linnstaedter, J. L. "Necesssry Conditions for &
Multistage Bolza-Mayer Problem Involving Control Varisbles and Having
Inequality and Finite Equation Constraints,” Progress Report No. 7 on
Studies in the Fields of Space Flight and Guidance Theory. Huntsville,
Alsbama: NASA-MSFC, Aero-Astrodynamics Laboratory, 1965.

Gelfand, I. M. and Fomin, S. V. Calculus of Variations. Engl ewood
Cliffs, New Jersey: Prentice Hall, Inc., 1963.

Powers, W. F. Hemiltonian Perturbstion Theory for Optimal Trajectory
Anslysis. Austin, Texas: Engineering Mechanics Research Laboratory,
University of Texas, 1966.

Smart, W. M. Celestiel Mechanics. New York: John Wiley and Sons,
Inc., 1961.

Powers, W. F. and Tapley, B. D. Canonical Transformation Theory and
the Optimal Trajectory Problem. Austin, Texas: Engineering Mechancics
Research Laboratory, University of Texas, August, 1967.

Loney, S. L. An Elementary Treatise on the Dynemics of a Particle and
of Rigid Bodies. Cambridge, England: University Press, 1956.

Piaggio, H. T. H. An Elementary Treatise on Differential Eguations
and Their Applications. London: G. Bell and Sons, ILtd., 1928,

Miller, Frederic H. Partial Differentisl Equations. New York: dJohn
Wiley end Sons, Inc., 1960.

Powers, W. F. Canonical Transformetion Theory and the Optimal Low=-
Thrust Problem. Austin, Texas: Engineering Mechanics Research
Taboratory, University of Texas, March 1968.

134



ON A METHOD OF OBTAINING A COMPLETE |NTEGRAL
OF THE HAMILTON-JACOB! EQUATION ASSOCIATED WITH A DYNAMICAL SYSTEM

By Philip M. Fitzpatrick
Professor of Mathematics

~and
John E. Cochran
Instructor of Aerospace Engineering

Auburn University
Auburn, Alabama

135
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Consider a dynamical system whose equations of motion are

4 - 3 (a;;pj3t)

i 3p;
i=1,2,...,n; j=1,2,...,n (1)
. ofaj;p45t)
Py =° 3q;

where the Hamiltonian, H(qj;pj;t), is understood to be a function of the gen-
eralized coordinates, qj, and their conjugate momenta, pj, j=1,2,...,n, and
possibly the time, t. If one-half of the integrals of Eqs (1) have been
obtained in a suitable form, there is a well-known theorem, due to Liouville,!
which may be used to find the remaining integrals. The purpose of this note
is to point up the related, but perhaps not so well-known fact that a method
of obtaining a complete integral of the Hamilton-Jacobi partial differential
equation associated with (1) is implic¢itly contained in the theorem. Since a
complete integral of (1) will permit us to express the solution of (1) in
terms of canonical constants of integration, recognition of this fact is of
importance in studying perturbations of the original system. The method will
be discussed and applied in what follows.

Suppose that n integrals of a dynamical system with 2n degrees of free-
dom are known in the form

Qi(qj;pj;t] = g4, i=1,2,...,n; j=1,2,...,n )
where the aj form a set of n independent constants of integration. If the

Poisson bracket expression, (°i’¢j)» vanishes for each i and j and if the ¢;
are solvable for the p, in the form

YE. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies (New York: Cambridge University Press, 1959), pp. 323-325.
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p; = fi(qj;aj;t], i=1,2,...,n; j=1,2,...,n (3)
the Liouville theorem states that the difference between
n

2 £;da;

i=1

and H(qj;aj;t)dt is the perfect differential of a function W(qj;aj;t] and
that thé remaining n integrals of the system are given by

= = B.» i=1,2,...,n 4)

where the 8; form a set of n constants of integration which are independent

of each other and of the set formed by the aj.

To say that

n
Zlfidqi - H[qj;uj;t)dt, j=1,2,...,n (5)
1=

is the perfect differential of a function W(qj;aj;t) means that

oW - iz

T = f; ="p;, i=1,2,...,n (6)
i

oW

— = —H 7

o (7

Thus, implicit in the Liouville theorem is the fact that the function W is a
complete integral of (7) which is the Hamilton-Jacobi partial differential
equation associated with the system.

When the n integrals of (2) can be solved for the qj instead of the pjy,
i=1,2,...,n, the theorem may also be applied, if the canonical transformation

W (8)
P =gy

to new variables (Q;,P;) is first introduced. Even if we are not able to
solve the n integrals (2) explicitly for the p;, or for the q;, a complete
integral may still be obtained in certain important cases now to be discussed.

Suppose we are able to solve the integrals (2) explicitly for 2(% < n)

momenta and n-% coordinates. Suppose further that, after reordering the sub-
scripts, the expressions for the 2 momenta and n-2 coordinates can be written
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in the restricted form

L= . e i=1,2,...,4; k&;
Pi £ (axsppsegst) s mil i
) y (9}
o . I i=2+1,2+2,...,n; k>8;
q; = hl(qmipkxa:';t)) mil; j=1,2,...,n
By introducing the canonical transformation
pi* = Pi qi* = ql’ i=1,2,...,2 (10)
Pi* = -q; qi* = P;» i=f+1,2+2,...,n
Eqs (9) may be written in the form
& = * .*' .t .= ... M .= .. )
p; £ (a5%5055t), i=1,2,...,n; j=1,2,...,n (an

Equations (11) are in the form of (3), and the theorem may be applied.

Example 1: Central Orbit in the Plane, Polar Coordinates

For a particle moving in a plane under a central force derivable from
the potential V(r), the Hamiltonian function is a constant aj. If we desig-
nate by (py,pg), the momenta conjugate to the polar coordinates (r,8), respec-
tively, (see Figure 1), the system has the well-known integrals

Pg = 0y, a constant (12)
2
o
P, = */—[ai + V()] - (13)

From (5), we write
dw = prdr + pede - (!,ldt (14)

If r, is chosen so that no new independent constant is introduced, the func-
tion

T
W = ppdr + a,0 - at (15)
To

obtained by integrating (14), satisfies (7). Also, W is a complete integral
of (7) since it contains two non-additive independent constants a; and op.
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y

Figure 1

Example 2: Free Motion of a Triaxial Rigid Body

For the free rotations of a triaxial, rigid body about a fixed point O,
the Hamiltonian function, which is a constant of the motion, a;, may be writ-
ten in terms of the Fuler angles (8,4,¥), which specify the position of prin-
cipal axes at 0 relative to space-fixed axes 0&nZ and their conjugate momenta
(pPe,pPy,py). See Figure 2.

Figure 2
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Three known

Py =

integrals for this dynamical system are2

o3, a constant ) (16)
2 . 2.2 _ 2 5.2 - pa?
tan-1{—1%2 :a Pg - tan-1{-L%2 Py Py (17)
3 Py

tan~! Pe
/cx22 - pgz - pg?
S1) AN\ (2Bay - a,2)C + (C-B)pe? 18
tan” 9B} (2ha - o, 2)C + (C-A)p,? (18)

where A, B, and C are the principal moments of inertia at 0 and a; is the
constant magnitude of the angular momentum about 0.

Although it
expressed in the
the form of (9);

Py =
P, =

P; =

is not possible to solve (17) and (18) so that p, and pg are
form of (3), the set of equations (16), (17}, anﬁ (18) is of
hence, the canonical transformation

-9, q = P¢
-8, q, = Py (19)
Py q3 = ¥

allows us to write (16), (17), and (18) in the form of (11). Then, from ),

we write

daw =

p1dq; + pedqz + p3dqsz - aydt (20)

If q1¢ and qpo are chosen in a manner which introduces no new independent
constants, the function

23ee Whittaker, p. 325.
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a3

2
2 FR—
Q - 0O ~ X
W= -o1t + azqy + tan'l{ 2 = }dx

20

q2
Va2 - T X2
- tan-1 { %2 4 X dx

a1
q20
q1 1
o {-(%) € L %ﬁ} ax
d10

obtained by integrating (20), is a complete integral of (7).
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AN OFFSET VECTOR ITERATION METHOD FOR SOLVING TWO-POINT
BOUNDARY~VALUE PROBLEMS

By C. F. Price*

An offset vector iteration technique is proposed for solving two-point boundary-value problems.
In this paper the properties of the hod are e3 d. Application to lection i

P

first considered and convergence properties are described; comparisonris made with other
numerical methods. The two-point boundary-value problem is shown to be equivalent to the

p The
order techni I

, in many

thod generally has a lower convergente rate than second

each iteration requires relatively few computa-

tional oper;ﬁms. Therefore it is competitive with higher order numerical procedures in

applications that require few iterations to obtain an p

bly accurate A modification

to the offset vector method is suggested which takes advantage of the finite difference information

generated at each iteration.

(First received September 1967 and in revised form February 1968)

1. Introduction

The use of offset vectors to develop iterative techniques
for solving two-point boundary-value problems is a
numerical procedure that has been proposed and
investigated for use in near-earth (Godal, 1961), (Price
and Boylan, 1964) and interplanetary guidance applica-
tions (Battin, 1964a), (Slater, 1966). The advantage of
the method, when it can be applied, is that each
iteration is often computationally simple to mechanise,
relative to other techniques. In fact, there is evidence
that it converges sufficiently rapidly in some cases to
permit its use in rcal-time airborne guidance systems
(Price et al., 1964). This study was motivated by the
desire to utilise an offset vector method for solving
certain two-point boundary-value problems that repre-
sent necessary conditions for optimal trajectories. An
example of such an application is presented in a recent
paper (Price, 1967).

The concept of the offset vector method is easily
understood and motivated through a simple, familiar
example. Consider the problem of hitting a target with
a projectile fired from a gun that is stationary with respect
to the target. Let the direction of the gun barrel on the
Jjth shot be designated by a unit vector, i,/ = 1,2, . . .,
expressed in an appropriate coordinate system. On the
first shot, j = 1, , is some function,

iy = i(rp),
of the target’s position, r;. Suppose the first shot

misses the target by a miss-vector, Ar;, such that an
impact point, r,, is defined by

ry=rr+ Ar,.

Using whatever quantitative knowledge of the miss he
has, the gunner attempts to make an intelligent choice
of the pointing direction on the next shot. If it happens

that i, is expressed in the functional form (however
crude)

iy = irr — Ary)
where (rr — Ary) is a ‘dummy’ target position, we say
that an offset vector iteration technique is being used.
By analogy, on the kth iteration

ey =lpprr—Ary — Ary— ... —Ar ) k=1,2...

The philosophy is that on each iteration the aiming point
is changed by the negative of the miss-vector. It is
shown in this paper that such an approach is applicable
to solving two-point boundary-value problems; in fact
the above example can be formulated as such a problem.

Offset vector methods are ad hoc in nature because no
general quantitative prescription is given for implement-
ing the iterations. In the projectile example, the
functional form of i, ,{ ) depends upon the sophisti-
cation of the fire control system. This point is
emphasised in the subsequent discussion. However, it
appears that the convergence properties of the technique
can be described, to some extent, without reference to
any special application, and comparisons can be made
with other numerical procedures. That is the primary
purpose of this paper.

In the next three Sections the concept of offset vectors
for solving parameter selection problems is more
precisely defined, convergence properties are described,
and a simple example is presented. In Sections 5 and 6
it is shown that the two-point boundary-value problem
reduces to that of paramcter sclection and results of
utilising the method in a typical physical application are
given. In Section 7 a modification to the offset vector
method is suggested which takes advantage of the finite-
difference information generated at each iteration. This
provides a means for making a transition from the offset
vector method to a finite-difference version of the

* Staff Member, Experimental Astronomy Laboratory, M

Insti of Technology, Cambridge, Massachusetts.

of
This research has been sponsored by NASA ERC Contract No. NGR 22-009-207.
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Newton-Raphson technique in situations where many
iterations are required.

2. An offset vector method for solving the parameter
selection problem

Parameter selection or equation solving is simply the
task of finding a value of an n-dimensional vector
x = x,, which satisfies the vector equation

g(x) =0. 1
In parameter optimisation problems, equations of this
form are necessary conditions that a function $(x) have
a stationary point. We assume that g(x) also has
dimension n and that at least one solution of eqn. (1)
exists.

Numerical techniques for solving eqn. (1) depend
upon having an initial guess x, that is ‘near’ the desired
solution x,, and improving that guess by iteratively
generating a sequence {xy, X, . . .} which converges to
xo. Criteria for convergence of the sequence are
usually given in terms of sufficient conditions satisfied by
g(x) in a region about x,, containing x,.

The most important property of any particular

numerical method is the total time required to achieve a
sufficiently accurate solution for x.. This is dependent
upon two factors—the number m of iterations required
to obtain a value x,, that is sufficiently close to x, and
the computational complexity of each iteration. One
often observes that these factors are inversely related;
that is, the simpler each iteration is to perform, the more
iterations required to obtain a desired level of accuracy
in the solution. This characteristic is evidence of the
fact that the amount of progress made in each iteration
toward x., i.e. the convergence rate, depends upon the
amount of information used about g(x) in deriving the
recursion expressions.
.- Because the total time required for convergence is
often dependent upon inversely related factors, it is
difficult to state @ priori in any particular application
which of the various numerical methods is most
advantageous from a computational point of view.
However, if any initial guess x, is quite close to x,
relatively simple iteration techniques may accomplish
the required degree of accuracy with no more, or few
more, iterations than more elaborate methods. This
rationale provides the motivation for describing an offset
vector iteration technique which is potentially simple to
implement and is based upon the idea of having a
reasonably accurate initial guess x,; in fact, the structure
of the method is defined by the manner in which x, is
chosen.

Suppose one can find an r-dimensional vector function
g(x) that approximates g(x) such that the solution

= xp of

£(x) =0 (03}
is relatively easily determined.* For example, g(x) and

* This is not to say that xo need be determined by an explicit

formula; the solution to” eqn. (2) may also have to be obtained
numerically. An example of this kind is given in Section 6.
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Fig. 1. Graphical development of the first two iterations of
the offset vector method applied to a scalar function g(x)

£(x) may be of the form
g(x) =g + Gx + ¢f(x) =0 } 3
g(x) =g + Gx =0
with € a constant scalar, g a constant vector, G a non-
singular matrix and f(x) some nonlinear function of x.
If the term ef(x) is small relative to g(x) for x near x«,
the solution x, = —G~lg, is near x,. Let us write the
solution to eqn. (2) as

xp = £~1(0) = h(0) @

where ¢ —'( ) represents the required inversion of &( ),
and the argument O refers to the value of the right-hand
side of eqn. (2). The situation is illustrated graphically
in Fig. 1a for n = 1.

Having x,, we can evaluate

g(%o) = go» &)

noting the eqn. (1) is in general not satisfied, that is,
2o # 0. Based upon this observation an improvement
to x, can be determined by the following reasoning.
Suppose g (x) differs from g(x) by only a constant vector
fo, that is,

§(x) = g(x) + fo; forallx. ©)
Then
g(xo) = —fo = go-
If this be true, the solution to eqn. (1) is also the solution

to
Ex)—fo=0

£0) = —% m

Thus we offset the approximating function by the
negative of the error determined in eqn. (5) and calculate

or
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xy from eqn. (7), using the notation of eqn. (4).
xy = h(—go). ®

This sequence of operations is illustrated in Fig. 1b.
The quantity —g, is analogous to —Ar, in the projectile
problem of the previous section.

In general, x, does not satisfy eqn. (6) either, as
evidenced by

gx) =g, #0.
Accordingly, replace eqn. (6) by the conjecture
&(x) =g(x) — g + /i )

which leads to

gx)=—fi=g

gx)=—g — & (10)
resulting in

x; = h(—go — &1)- an

These steps are shown in Fig. lc.
The recursion relationships required for the con-
tinuation of this method are readily inferred from the

preceding discussion. Define
8 =g(x)
yi:—_zlg,-; i=—1,01,... (12)
P
Y-1=—8-1=0
and let
Ex)=yi_; i=0,1,... 13)
Then,
Yi=vi-1— & i=0,1,...)
M 14
X =g Wyimy) = h(yi_p) } (14

At each iteration one evaluation each of g( ) and A( )
is required. The quantity y; is referred to as the offset
vector. Now we shall discuss circumstances in which
the sequence {xg, x;, ...} generated by eqns. (12-14)
CONVerges to xq.

3. Convergence properties

One expects that the convergence properties of the
offset vector method depend upon the accuracy with
which £ (x) approximates g(x). To pursue this reasoning
define an error vector Ag(x) by

g(x) =g(x) + Ag(x). (1%
Substituting x; for x, we have
8(x) = £(x) + Ag(x). (16)

Into eqn. (16) we can substitute for #(x;) and x; from
eqns. (13) and (14), producing

g(x) =
gy

g =vi-; + Aglh

i~ Y]
\Vi— i/

~J
~

3l
w

Rearranging terms and substituting for the quantity
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(yi-1 — &) from eqn. (14) yields

vi = —Aglh(yi- D] (18)

Equation (18) is equivalent to eqn. (14) and is the
recursion for solving

y = —Ag[h(y)]. (19)

by successive approximations.  The solution, y., to
eqn. (19) is the limit of the sequence of offset vectors
{Y0 ¥15 . . ..~ Viewed another way, it is the value of
£(xs). (See Fig. 1.)

Sufficient conditions for the convergence of the
sequence {y;} are known for successive approximation
iteration methods. For example, convergence is
assured (Todd, 1962) if Ag[h( )] satisfies the Lipschitz
condition

max|Ag[a(y)] — Agfh(y")]| < k max]y’ — y"[;
0<k<1 (20)

for all y* and 9’ in a neighbourhood of y,, containing
y-1r=0.

Alternatively, a recursion relationship for x; can be
derived from eqn. (14). Substituting for y;,_, and y,_,
from respectively eqns. (14) and (13), we have

x; = h[—Ag(x;_ 1)) 21

The solution of this expression with x; and x;_; replaced
by x is the value of x == x, that renders g(x,) = 0 and
E(x0) = Yo

A third way of viewing the iterative procedure is that
the sequence {go, gy, . . .} of evaluations of g(x,) is being
driven to a limit of zero. This is perhaps the most
natural point of view for the applications to be con-
sidered subsequently. From eqns. (12)~(14) it is evident
that g(x,) is a nonlinear function of all g(x)), j < i, of the
form

gi=glh0—g —8 —...—g- ) 22)
Similarly,
gi+1 =80 — g —gi~ ... —g)l. (23

Linearising g;,, about g; with substitution from eqns.
(12)—(14) we have

i1 =8 — Gx)H(yigis i=0,1,... 24

where
dg(x A
o) ="%2; Hey =" @5)
Equation (24) indicates that
limg; =0
1w
if W/ — GH|| <1 (26)

in some sufficiently small region about x,, such that the
linearisation is valid. Note that if g( ) = g(), GH= L
These convergence properties provide a comparison
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between the offset vector method and other procedures
that can be employed for finding x,. Considering
egn. (19), perhaps the most significant observation is
that the method does not possess second-order conver-
gence because the gradient matrix corresponding to
eqn. (19),

dAg[h()]
dy Yo

n general (Todd, 1962). Thus a Newton-Raphson
technique, beginning at x, may require fewer iterations
to approach x, within a desired accuracy. However,
the offset vector method possesses two advantages that
motivate its use in certain situations.

First, applications arise in which g(x) cannot be
expressed in closed form, such as the solutions of many
two-point boundary value problems. In these cases
every evaluation of g(x) requires numerical integration
of differential equations. In addition, for Newton-
Raphson-type procedures the gradient matrix must also
be computed numerically, requiring additional complete
integrations of the appropriate differential equation; for
each iteration. Hence, if the approximation g(x) is
sufficiently accurate, one may conceivably reach a point
sufficiently close to x,, with an offset vector technique
before a higher order method gets started. The offset
vector method has proved sufficiently rapid in situations
of this kind to be incorporated in a real-time airborne
guidance system (Price er al., 1964). An example of
such an application is included in Section 6.

Second, the offset vector method is a reasonable
starting procedure for a higher order method in situa-
tions where many iterations are required.. The points
Xo» X1, . . . and associated values go, g, .. can be
stored to provide corrections, based on finite differences,
to subsequent evaluations of x;. A possible method for
accomplishing this is described in Section 7.

There is the disadvantage that some means must exist
for finding an appropriate (x). Whether this can be
done depends upon the particular problem and the
analyst’s ingenuity; for this reason the concept of offset
vectors does not provide a ready-made numerical
algorithm for attacking all parameter selection problems.
The fact that applications are known (see the references
mentioned in Section 1 and the example of Section 6)
where the method can be applied is a testimonial to its
usefulness.

0,

4. Example 1

To illustrate the offset vector method, a simple one-
dimensional example is presented using equation
numbers corresponding to those expressions in preceding
sections which are exemplified.

Given

gy=14+x+ex®=0. 1)
Let
g0 =1+x @
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Then
Yi = Yi-1 — 8i
x; = hy;i—) = vi-1— L. (14)

Using the criterion for convergence provided by eqn. (26),
we find that

G(x) =1+ 3ex?; H(y)=1 (25)
3x%e] < L (26)

Furchermore, from egn. (24)
Bt o 30| 24)

which provides a measure of the convergence rate.

It should be emphasised again that the offset vector
method is not promoted especially for a high conver-
gence rate. In general, and for this example in par-
ticular, it converges more slowly than Newton’s method.
The main advantage is the relative simplicity with which
each iteration can be performed. This is illustrated by
observing that the recursion relationships in eqn. (14)
for this example require two subtractions and one
evaluation of g(x) per iteration. On the other hand,
Newton’s formula,

glx) ., dg(x)
Xit1 = X; o) g'(x)) = dx Lﬂ{
requires one subtraction, one division, one evaluation of
g(x), and one evaluation of dg(x)/dx per iteration;
clearly this entails significantly more computation. The
total time required to obtain an acceptably accurate
solution for x., is less for the offset vector method if |e]
is sufficiently small so that only one iteration of either
method is required.

In situations where g(x) has several dimensions and a
complicated functional form, the computational advan-
tages offered by an offset vector method are more signi-
ficant. As mentioned previously, it is competitive with
higher order techniques when a sufficiently good approxi-
mate solution can be obtained. In applications where
the problem must be solved repeatedly, as in rocket
guidance systems, considerable computational saving
may be gained. This is illustrated by the example in
Section 6.

5. The two-point boundary-value problem

The use of offset vectors to develop iterative techniques
for solving two-point boundary-value problems is a
numerical procedure that has been applied to near-earth
(Godal, 1961), (Price et al., 1964) and interplanetary
guidance (Battin, 1964a), (Slater er al., 1966) problems.
In this section it is shown that the convergence properties
can be stated in the same terms as for the parameter
selection problem.

A two-point boundary-value problem is posed by
assuming a given dynamical system described by
n-dimensional vector differential equations

X = f(x,1) 27
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with prescribed end conditions

Ofx(to), 1,] = 0 }

Plx(ts) 1,1 =10
where o, and f, are initial and final times, x is an
n-dimensional state vector, ® and i are respectively
I- and m-dimensional vectors, with / + m=n 4 2. It
is assumed that a solution exists which cannot be
determined in closed form, requiring the use of numerical
techniques.

We shall regard the solution to eqn. (27) known when
the complete set of initial conditions x(fo), ¢, is deter-
mined such that eqns. (27) and (28) are satisfied. The
explicit dependence upon egn. (27) is conceptually
eliminated by writing the solution as

x(1) = x[x(to), 10, 1]
so that eqn. (28) becomes

Dlx(t), t]
sttt = [, 9] =0 OO

Equation (30) has the form of eqn. (1) where the
parameters to be determined are x(t,), ¢, and 2.

The offset vector method is implemented in a manner
analogous to that described in Section 2. Approximate
solvable relations

28)

(29)

&[x(to), tos 2,1 =0 (€3Y)

are derived, often by means of a simplified set of
differential equations

% =fx, 1), (32

subject to eqn. (28). For example, eqn. (27) may
describe motion in a many-body gravitational field and
eqn. (32) may represent an approximating two-body
model with eqn. (28) specifying the initial and final
positions at specified times. The solutions xo(fo,), Zo,
and 1, of eqn. (31) are entered as initial conditions into
eqn. (27), and the differential equations are integrated
from ¢, to ¢, producing

xolt ) = xlxoltop)s ton £1)- (33)

Substitution of #o,, 15, and xo(to,) for 2o, 2, and x(#o) in
eqn. (30) yields

glxoltop)s top 11l = o # 0
in g’enei‘al. Defining the vector
2T = [x(to)7, to, ],

the iterative computation of the sequence {z,, z;, ...}
proceeds just as in Section 2 with the understanding that
each evaluation of

glxito), top 1] = &

requires integration of eqn. (27).
The motivation for using offset vectors is now more
apparent. Vis-a-vis higher order methods it may be of
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considerable computational advantage to obtain even an
algebraically complex form of eqn. (31) if computation
of the gradient of g[x(ty), 1y, ¢,] is thereby avoided. A
practical multidimensional example of this type is
considered in the next section. Observe that the pro-
jectile problem discussed in the Introduction can also be
formulated as a two-point boundary-value problem and
its solution obtained in the manner described above.

6. Example 2

This section discusses an application of the offset
vector method to a practical two-point boundary-value
problem. Equation numbers denote those expressions
in previous sections which are exemplified.

Consider the motion of a body in a planar orbit in
the earth’s gravitational field. If the earth’s rotation and
atmospheric friction are neglected,* the equations of
motion are reasonably accurately represented by

X =0,
. x JEA®  5JEA%
b= plEt T 5

@n
i=wv, '
. z JEAX  5JEA% 2JEAz
i P e e

where A is the equatorial radius, J and E are constants,
r = 4/(x2 + z2), and x and z are position coordinates in
an orthogonal coordinate system with the z axis along
the earth’s polar axis. Because the orbit is polar, only
two dimensions need be considered. Equations (27)
describe the gravitational accelerations including the
effects of the earth’s slightly elliptical shape. Let us
pose the problem of finding the imitial velocity com-
ponents, v,(to) and v,(f), required to transfer a body
from a given initial position at time #, = 0 to a given

final position at a specified final time. Hence
tp=0 t;—T;=0
x(to) — a, =0 x(ty) — by = 0} (28)
2(ty) —a, =0 2(t)—b, =0

where a,, a,, b, b, and T,are given.

For the case where the carth’s oblate effects are
neglected (J =0 in eqn. (27)), the task of finding the
initial velocities subject to the given conditions is the
familiar Lambert’s problem of classical mechanics. For
this case eqn. (27) can be integrated analytically by
changing the independent variable; several methods of
obtaining explicit expressions for g(x) are known
(Battin, 1964b). For J # 0, there is no known method
of integrating eqn. (27) analytically; hence a numerical
technique is required.

The offset vector method is naturally adapted to this
application by using the known solution to Lambert’s

* It is recognised that neglect of the earth’s rotation contradicts
the intent of treating a practical example. However, this effect can
be inciuded without changing the gualitative interpretation of the
numerical results; it is omitted only to reduce the complexity of
the discussion.
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a, a, N N
1 L *i-1 L Zi-1
Solve Lambert's Integrate Evaluate Compute
problem Egs, (21) x, (T..) Bqs.(22) at ax. (T | New b
(Egs, (25) vxj_ o) | from £5=0 ivF 1E position| ‘i
—

r—=% b, b . : Offset

: %, 2 Xi.1 "zi(to) to  t=Te | g (T) x; (Tp) 25 (Tg) bz trp) se bzi |'
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next iteration
Fig. 2. Comp I flow of the ith iteration in
Example 2

problem with J = 0 as an approximation. Introducing
J = 0 into eqn. (27) produces a set of equations repre-
sented by eqn. (32) in Section 5. For the terminal
conditions prescribed by eqn. (28), one form of §(x) due
to Godal (Battin, 1964b) is given by
0,(0) — Cy(b, — Ca) =0
v0) — Ci(b, — Coa;) =0
V(EP) _

T ryresin

1

C2—l+¥(l—cos(9):0

re— V(@ +a)=0
re— /(2 +0) =0
6 — cos™! [(a,b, + a.b)rers] =0
P _Vror)sin? 0-50 -
(B — cos «) cos 0-56
B~ (ro + ry)24/(rors) c0s 0-56 = 0
T~ 2{(\/(forf) cos 0.59),'5\/(8;;0‘5 ‘3)

l:l x (B — cos a)(2a — sin 20:)]} 0

2sind«

(31

The solutions to eqns. (31) are the proper initial velocities
to achieve the conditions in eqns. (28), neglecting the
oblateness of the earth. Observe that eqns. (31) are
transcendental in «; therefore their solution must be
obtained numerically. This represents a situation where
eqns. (2) cannot be inverted analytically.

The offset vector method proceeds by carrying out the

following steps:

1. Denote the solutions of eqn. (31) as v,(7,) and
v,{fp); these are obtained by any convenient
numerical method. Newton’s method has been
used in this simulation,
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2. Integrate eqn. (27) from ¢t =0 to r = T, using
a,, a, v.(ty) and v,(te) as initial conditions.
Denote position on this trajectory by x(f) and zy(?).

3. Evaluate the left hand sides of eqn. (28) for the
integrated trajectory. Define

Axy(Ty) = xo(Ty) — b,
AZO(T/) = zo(T/) —b,.
4. Recompute the initial velocities from eqn. (31) by

requiring

x(Ty) — by = —Axe(Ty)

2(Ty) — b, = —Az(T)).
This implies that eqn. (31) undergoes the changes
of variable,

by— b, — Axo(Ty) = by,

b,—>b, — Azy(T;) =b,,.

Denote the solutions as v,,(#p) and v,,(¢,).

5. Repeat steps 2 through 4 in an iterative fashion.
The functional diagram in Fig. 2 illustrates the
steps at the ith iteration.

For this simulation the following parameter
values are used:

a, = 2-093 x 107 feet
= 0-0 feet

E = 1407645 x 10'®
J=1-62345 x 10 3
0-0 feet A = 2-093 x 107 feet
3:0 X 107 feet T, = 2400-0 seconds

This roughly represents .insertion into a 2000-mile
altitude orbit at a point above the pole from a point on
the equator. The computation was performed in double
precision arithmetic on an IBM 360/65 computer.
Newton’s method is applied to solve Lambert’s problem
and a Gill-modified Runge-Kutta integration technique
is used to integrate eqn. (27) with a 20 second time step.
The values of terminal position error, Ax(T,) and
Az(Ty), for two iterations are given in Table 1:

al
by
b,

bl
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Table 1

Position error data from simulation
(Rounded off to 3 significant figures)

i |
ERROR. ERRO:! i gH o ERROR AFTER ith ITERATION
QUANTITY CORRECTIONS TO i
LAMBERT SOLUTION i=1 | i=2
FEET FEET FEET
|Ax(Tp)| 2-34 x 104 1-51 x 10! |4-41 x 10-2
‘lAz,—(Tf)l 537 x 104 | 7-25 x 10{9-56 x 10-2

15t offset iteration

15! finearized correction.

2" offset iteration

*2

{a) - x-space X —>

i* |ine’u_rized
correction
a9,

9, —*

1! offset iteration

2" otfset iteration

) 92

{b) g- space 9, —

Fig. 3. Progress of finite-difference modification of offset
vector method in two dimensions

Adequate accuracy is obtained in one iteration for many
applications. For these cases any other numerical
method that has an equal or greater convergence rate
can be compared on the basis of the computational
complexity of each iteration.

In this simulation the time required to solve Lambert’s
problem with sufficient accuracy is approximately
0-01 seconds whereas that required for integrating eqn.
(27) is 0-30 seconds. Because the latter* dominates

# An integration step three or four times jarger than Z0 seconds

would give terminal position accuracy better than 100 feet in this
example.

nn~

the former, any method that requires more differential
equations to be integrated is at a competitive - dis-
advantage with the offset vector method. For Newton—
Raphson type procedures, the gradient matrix of g( )
with respect to v,;(f,) and v,,(#,) must be obtained. This
can be obtained numerically by perturbing each velocity
component separately and integrating eqn. (27) to
determine the effect on the end conditions. Obtaining
the complete gradient matrix by this procedure requires
n additional complete integrations of eqn. (27) per
iteration; this results in tripling the amount of integra-
tion required in this example, effectively tripling the
computation time for each iteration. The gradient
matrix can also be obtained by integrating the linear
variational equations associated with eqn. (27); how-
ever, the increased computation is of the same order as
that required to obtain the matrix by the perturbation
technique.

These comparisons indicate that the offset vector
method is superior to higher order methods in some
problems. The example considered here has application
to rocket guidance for which the thrust is directed so
that the vehicle’s velocity matches. the values of v,;(fp)
and v,(t;) in Fig. 2. The two-point- boundary-value
problem must be solved many times in rapid succession
because the initial time and the rocket’s position are
constantly changing. For ‘real-time’ computation of
this sort, speed is a primary consideration.

7. Modified offset vector method

In Section 3. it is pointed out that the offset vector
method can serve as a starting procedure for higher-order
techniques. . The possibility for doing this is evident at
the (n + 1)th step after the sequences {xo, Xy, . .. X,}
and {go, &1, - . - &} have been computed. Defining

AxiEx,-—x,-_,}

34
Agi=g — 8i-1 G

we have sufficient information to derive an approximate
gradient matrix (or its inverse) provided the Ax,’s (or
Ag/’s) are independent. For example,

%~
S=G=x9 35

0
where @ and X are matrices whose ith columns are
respectively Ag; ‘and Ax; Faster convergence may
possibly be obtained by continuing the numerical. pro-
cedure with a Newton-Raphson-like technique using
to determine new values of x according to

X0 =—Glg; (36)
where G, depends upon the last » values of Ag and Ax.
In this section we shall describe a recursive method
whereby the gradient information available at each stage
is utilised to adjust the offset vector computation,
producing results analogous to eqn. (36).

151



BOUNDARY-VALUE

Consider the first two steps in the offset vector method
after which xq, X;, go and g, are known. These ‘points’
are indicated for a two-dimensional case in Figs. 32 and
3b. With Ax, and Ag, thereby determined, we can
calculate the required first order change Axj in x to
product a desired change Ag’in g in the direction of
Agy:

€0

Note that Ag’ is a scalar that may, be either positive or
negative. Out objective being to drive g to zero, to first
order (approximately*), we can remove that component
in the direction parallel to Ag, by defining

, C . Ag
Agi = — (81 iag)iag; iag = vl‘l

Axi = —(g1.iag) A% /| A1

(3%
Xt =x + Axi
g =g + Az
These quantities are illustrated in Fig. 3. Note that

—(g;-iag,) in eqn. (38) plays the role of Ag”in eqn. (37).

There is as yet no gradient information available in
the direction normal to Ag, so, at this point, return to
the offset vector algorithm. First, using eqn. (13)
calculate the value vy of the offset vector that cor-
responds to x;:

o = £(x)- (39
Assume that )

g =g + Agi =gi; «“0
note that exact equality does not hold because Agy is
computed from a linearised analysis. Now let

Yi=v0—&
X2 = h(y) @h
g2 = g(x2)-

This completes a new step in the iteration process.
Observe that the same number of evaluations of g(x)
are required as for the offset vector method. The
difference is that x, is computed with the aid of an
intermediate value xi that is calculated by a finite dif-
ference projection.

From x, and g, the quantities

Axy =%, — X5 Ag,=8—8 42)

are calculated as illustrated in Fig. 3. In the two-
dimensional case Ax;, Ax,, Ag, and Ag, provide suffi-
cient information to continue the search for x, by a
finite difference method alone, provided the Ax’s and
Ag’s are independent. In higher dimensions we can
proceed as before, calculating an intermediate x; based
upon finité difference projections in both Ag, and Ag,

* This is not an exact first order calculation because the gradient
in the direction Ag; is computed from a finite difference.
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Xp —*>

(a) x — space % —

92

(b) g- space g, —>

Fig. 4. Illustration of orthogonalisation of the vectors Ag,
with the associated transformation on the Ax,

directions and using the offset vector to find corrections
to x3 in the remaining directions. Here we shall derive
a recursion based upon orthogonalisation of the vectors
Ag,.

Suppose Ag,, Ag,, Ax; and Ax, are given as shown
in Fig. 4. The component of Ag, orthogonal to Ag, is
given by

89y = Dgy — (88, iag)iag:
According to eqn. (37), the associated change in x
required to accomplish the increment 8g, is given by
8x; = Axy — (Ags.is, /| A8y A,

Defining 8x, = Ax, and 8g, = Ag(, we can calculate

the change Agj; required to drive the projection of an

n-dimensional vector g, on the space of the orthogonal
vectors 8g, and 8g, to zero. Requiring

(Agy+82).88,=0; i=12
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we have .
Ags = — (82-isgVisg — (82-lsg.)ing
The associated change in x, Ax;, is given by
Axz = —(82.150,/1081)8x; — (83-1s,/19820 )55
Having Ag; and Ax;, we can calculate x{, g3, y1, Y2, X3,
and g, from eqns. (38), (39) and (41) by increasing the
value of each subscript by one.

This reasoning leads to the following set of recursion
relationships for deriving x;,,, having {xo, x;, . . . x;},
{go» &1 - - - &), orthogonal directions {8g,, 8¢, ... 8g:_1},
and the corresponding set of ‘influence’ directions

{8xy, 8x3, . .. 8x;_ 1}t
g =gkx)
Ax; =x— X~y
Agi =8~ 8i-1

i-1
Sg, = Agl —-jgl (Ag,.i5,,)i5"

=1
8x; = Ax; — 21 (Ag;.isg)/|88,1)A%;
j=

L]

i
Agi = — ,Z:l (8i-isg)ivgy “3)

i
Ax; = —;21 (8113 198))8x;

X =x; + Axj

8 =g + Ag
Yio1 = h(x)
Yi=Yior— &
Xpp1 = h(y). )
References

To start the process, two iterations of the unmodified
offset vector method are performed to provide values of
Xo» X1, g0 and g;. For i = n, we can discard all 8x; and
8g; for j < i — n; one set of directions is then effectively
removed at each step to be replaced by 8g, and 8x;.
Furthermore, for i = n the last four expressions of
eqn. (43) can be disregarded if we let

X1 =x5 izn 44)

That is, a Newton-Raphson-like procedure, using
approximate derivatives can be substituted for the offset
vector method at the nth step.

8. Summary and conclusions

The offset vector method presented here is one that has
been utilised to solve mathematical problems arising
from special applications. The technique has evolved
in this fashion because it requires knowledge of an
approximate solution whose availability is dependent
upon the physical situation. The purpose of this paper
is to give the method more formal status as a numerical
technique by presenting a recipe for its implementation,
by developing criteria for convergence, and by illustrating
its advantages through examples. It is found that the
convergence rate is generally slower than that of second -
and higher order methods, but each iteration is relatively
rapid to perform. Possible applications are those where
few iterations are required or as a starting procedure for
higher order methods when many iterations are
necessary.
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Abstract

A linearized theory is developed for minimum fuel guidance in the
neighborhood of a minimum-fuel space trajectory. The thrust magnitude is
unrestricted so that the thrust is applied impulsively on both the nominal trajec-
tory and the neighboring optimal trajectories. The analysis allows for additional
small midcourse impulses as well as for small changes in the magnitude, direc-
tion, and timing of the nominal impulses. The fuel is minimized by determining
the trajectory which requires the minimum total velocity change when summed
over all the impulses.

The analysis is deterministic and applies to arbitrary time-varying
gravitational fields. Three separate time-open problems are treated; rendezvous,

orbit transfer, and orbit transfer with tangential nominal impulses.

*
Performed under contract NAS 12-114, presented at AIAA 7th

Sciences Meeting, January 1969, Preprint No. 69-74.
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List of Symbols

Position deviation

Nominal final time

Time deviation

Component of midcourse impulse in the critical plane
Component of midcourse impulse in the noncritical direction
Velocity of target trajectory

Velocity of nominal interception trajectory

Nominal terminal impulsive velocity change

Total change in impulsive velocity cost
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Introduction
This is the second of a series of papers on minimum fuel guidance
of high-thrust rockets. The first paper (Ref. 1) illustrated the general approach
by treating the particular problem of guidance from a hyperbolic to a circular
orbit. The succeeding papers are intended to generalize this approach to more
general classes of guidance problems. This generalization will be carried out
in several stages. The present paper will consider the general case of time-
open impulsive guidance. Later papers will extend the analysis to finite thrust.
There is a well-developed theory for minimum fuel impulsive guidance,
e.g., Refs. 2, 3 and 4. However, these references consider only the case of
an unpowered nominal trajectory. The nominal trajectory around which the
analysis is linearized is a coasting arc. The present paper is intended to
generalize these results to nominal trajectories containing one or more finite
impulses. The analysis will consider three different problems. The first
problem to be treated will be minimum fuel guidance for time-open rendezvous,
The second problem will be time-open orbit transfer, and the third problem
will be an important special case of the second, where one or more of the

finite impulses is tangent to the velocity vector.
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Mathematical Model

The analysis of the present paper is linearized about a nominal
trajectory containing one, or more, finite impulsive velocity changes. This
nominal trajectory must be an optimal trajectory minimizing the sum of the
absolute magnitude of its impulses for transfer between its terminal states.
The problem considered is the deterministic problem of determining the
minimum impulse transfer from a given state in a close neighborhood of the
nominal state at a given initial time to the terminal state with time open. The
nominal trajectory may lie in a general time-varying gravitational field. The
analysis is a first order analysis neglecting second order terms. It is analo-
gous to the neighboring optimal guidance schemes developed for smooth
optimizati'on problems without corners. The problem is complicated by the
possession of corners and the possibility of introducing additional impulses.,
However, the problem is simplified because it is a first order analysis. In
general, the problem will be to guide the vehicle from a given initial state at
a given initial time to a final time in the near vicinity of the nominal terminal
time. For the orbit transfer problem the final time may be allowed to become
arbitrarily large; and it may also be possible to extend the initial time arbi-

trarily far backwards in time,
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Analysis

I. Time-Open Rendezvous

The key concept in analyzing minimum-impulse guidance for time-
open rendezvous is the concept of a noncritical direction. This concept was
originally developed for use in interception problems rather than rendezvous
(Refs, 2 and 5) but is also useful in analyzing rendezvous. Consider the case
where the nominal trajectory has a single finite impulse which accomplishes
rendezvous at a nominal terminal time. If rendezvous were to be accomplished
at a slightly earlier time §t, then the point at which rendezvous is accomplished
must be displaced by the negative product of the target velocity vector and the

time change.

6R=—VT6t @t=tf—6t 1)

This position is reached by the intercepter at an earlier time than the nominal
arrival time, If the trajectory of the intercepter were continued to the nominal

arrival time, it would have the position given by Eq. (2) and shown on Fig. 1,

6R = -V 6t+V 6t=-AVot @t=t @

This indicates that, if the intercepter will intercept a specified line in space

at the nominal arrival time, then it will (to first order) also intercept the target
at a somewhat earlier or later time. This specified line passes through the
nominal arrival point and has the direction of the nominal finite impulse. This

direction through the nominal arrival poinl is known as the noncritical direction
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at the nominal arrival time, It represents the one permissible direction of
position variation which will still lead to rendezvous. This noncritical direc-
tion may also be propagated backward in time by use of the state transition
matrix. It will then define a noncritical direction at any point along the nominal
trajectory.

In order to effect rendezvous, it is necessary to control the two
components of position variation in the plane normal to the noncritical direc-
tion. This plane is known as the critical plane. Once the terminal position
of the target vehicle and the rendezvous vehicle has been matched by reducing
the position deviations in the critical plane to zero, rendezvous is accomplished
by a finite impulse which nulls the difference between the target and inter-
cepter velocities. To first order, only one component of terminal impulse
variation adds linearly to the cost; that in the direction of the nominal impulse.
Any small deviations in the velocity vector normal to this direction may be
cancelled by small rotations of the nominal terminal impulse. Such rotations
only increase cost to second order and may be neglected in a first order
analysis,

The foregoing considerations indicate that only two components of
position and one component of velocity at the nominal final time must be con-
trolled for time-open rendezvous. This reduces the original 6-dimensional

parameter space toa 3-dimensional parameter space. If there is only one
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finite impulse, then the analysis for unpowered nominals in Refs. 2, 3 and 4
may be applied without change to this 3-dimensional parameter space. That
analysis indicates that the optimum solution has no more than three impulses.
One of these impulses will represent a variation in the magnitude of the nominal
impulse so that there are, at most, two midcourse impulses,

The required position correction at the nominal terminal time may
be accomplished with a single midcourse impulse. If this corrective impulse
occurs at a specified time, then the optimum direction of this impulse may
easily be calculated. One component of the impulse will produce the position
correction. This component will lie in the critical plane. There will also be
a component of the midcourse impulse in the noncritical direction, This com-
ponent will be used to reduce the magnitude of the large terminal impulse and
will result in an overall saving in impulse magnitude and fuel. The total change

in impulsive velocity is given by Eq. (3).

ne 3u unc du c @

The optimum magnitude of the velocity component in the noncritical direction
may be found by differentiating Eq. (3), and solving for the stationary minimum

point given by Eq. (4).

3BV]

N aunc C
Ye = T————% @
1. [BAV ‘I
L au_nc i
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The total cost of the optimum correction at a specified time is given by Eq. (5).

(5)

In the particular case treated in Ref. 1, the midcourse correction
should be made as early as possible and there will be only one midcourse
impulse for the minimum fuel solution. This behavior will be typical of most
cases as the time approaches the terminal time. However, in other cases as
many as two midcourse impulses will be required to minimize the fuel con-
sumption. It is also possible that a single impulse at a time later than the
time under consideration may be optimum. There are both direct and indirect
approaches to this optimization problem. The indirect method calculates the
primer vector (Refs. 6 and 7) from the direction given by the optimum direction
of a single midcourse impulse at the current time to the terminal impulse at
the terminal time. If this vector is less than unity at all intermediate points,
then the single correction will be the absolute minimum fuel solution,

The direct method is a constructive approach utilizing the convex
hull of the reachable set of terminal states (Ref. 2). This reachable set is
constructed in a parameter space defined by the change in the terminal impulse
magnitude and by the two position components in tﬁe terminal critical plane.
Each of these parameters is normalized by the magnitude of the midcourse

velocity change. An optimum maneuver must lie on the convex hull of the
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reachable sets in this space. The set of all impulse directions at a given time
will define an ellipsoid in the parameter space. Equations (4) and (5) will define
a generator of a cone which is tangent to the ellipsoid and whose apex is at minus
one on the velocity axis (see Fig. 2). If a single correction at the earliest pos-
sible time is optimal, then the cones for all subsequent times will lie inside the
initial cone. If two midcourse corrections are required, then the convex hull of
all the cones will have a plane as one of its bounding surfaces. If a single cor-
rection at a later time is optimal, then one of the later cones will project through
the cone corresponding to the initial time. The geometric construction for these
cases may be reduced to a 2-dimensional construction by using the traces of the
cone on the plane of the position variations. In exceptional cases where such
traces do not produce closed figures, it may be necessary to use another plane
that passes through the cones.

If the nominal trajectory contains one or more large impulses before
the final impulse, then all necessary corrections may be made by utilizing small
variations in these impulses, It is only necessary to consider small variations
of timing and direction of these impulses. Such variations allow control of one
component of position and two components of velocity at the time of the impulse.
These three components may then be propagated to the terminal state by means
of the state transition matrix. Except in exceptional cases it will be possible to
control all three required components of the terminal state by this means. This

control will (to first order) produce no increase in cost. This is shown by the
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fact that the primer vector passing through the two impulses of the optimal
nominal trajectory is stationary with respect to small variations in impulse

timing and direction.

II. Time-Open Orbit Transfer

If the object of the mission is orbit transfer rather than rendezvous,
the particular phasing of the vehicle in the final orbit is unspecified, This means
that there will be a set of noncritical directions arising from all points on the
target orbit in the vicinity of the nominal terminal time. This set of directions
will to first order define a plane in which will lie the velocity vectors of both
the target orbit and the transfer orbit at the nominal terminal time, All trajec-
tories which are close neighbors of the nominal trajectory and which touch this
noncritical plane at the nominal terminal time will also intersect the target
trajectory at a time close to the nominal terminal time. For the orbit transfer
problem it is only necessary to control the one component of terminal position
in the critical direction which is normal to the noncritical plane. The parameter
space which must be considered is only 2-dimensional, containing one position
component and one velocity component. There will be at most one midcourse
impulse in addition to small variations in the terminal impulse. The optimum
midcourse impulse may occur at a time other than the earliest possible time.

In fact, in some cases this single midcourse impulse should occur in the

neighborhood of the terminal orbit rather than in the neighborhood of the transfer
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orbit and at a time later than the time of the nominal terminal impulse. The
latter case is easily analyzed by considering the set of reachable states in the

vicinity of the terminal orbit, as well as in the vicinity of the transfer orbit.

II. Time-Open Orbit Transfer with Tangential Impulses

In many orbit transfer problems, such as the well-known Hohmann
transfer, the impulses are applied tangent to the velocity vector. In such a case
the noncritical plane of the preceding section becomes undefined and it is once
again necessary to consider a 3-dimensional parameter space possessing two
components of position variation, This case is similar to the case of time-open
rendezvous and possesses a noncritical direction and a critical plane. As in the
preceding section, it may be desirable to consider midcourse impulses in the
terminal orbit as well as in the transfer orbit, It is possible to have a midcourse
impulse before the major transfer impulse in the neighborhood of the transfer
orbit, as well as a post-terminal-time midcourse impulse in the neighborhood
of the nominal terminal orbit. If there are one or more large impulses on the
nominal trajectory before the terminal impulse, then variations in the timing
and direction of these impulses may be used to control the trajectory. In the
particular case of a Hohmann transfer, these variations will not be sufficient
to control all out-of-plane deviations because the two impulses are located at
singularities of the state transition matrix. In this case it will be necessary to
utilize midcourse impulses in either the transfer orbit or one of the terminal

orbits for controlling the out-of-plane component of the terminal position variation.
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Conclusions

(1) Minimum impulse time-open rendezvous in the neighborhood of
an optimal nominal trajectory requires at most two small midcourse impulses
if the nominal trajectory possesses one large finite impulse. Two midcourse
impulses may be required if either the nominal trajectory or the deviations
from it are nonplanar. If both the trajectory and deviations are planar, not
more than one midcourse impulse will be required tec realize minimum total
impulse.

(2) Minimum fuel, time-open orbit transfer in the near vicinity of an
optimum nominal requires at most one small midcourse impulse if the nominal
trajectory contains at least one finite impulse which is not tangent to the velocity
vector. If both the nominal trajectory and the small deviations from it lie in the
same plane, there will be no small midcourse impulse. In the latter case, the
first order minimum fuel solution will be a single impulse at the intersection
of the two orbits.

(3) For both time-open rendezvous and orbit transfer with two or
more finite impulses, no midcourse impulse will be required unless the finite

impulses occur at singularities of the state transition matrix.
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ABSTRACT

Objections to applying the spheroidal method to calculate a
polar orbit of an artificial satellite are easily overcome.

Previous papers have already treated the behavior in an exactly
polar orbit of the right ascension g, the coordinate for which
the difficulty supposedly occurs., Just as in the Keplerian prob-
lem, it remains constant, except for jumps of 180° at a pole.

There remains the case of an almost polar orbit, for which
the calculation of 4 may be inaccurate near a pole, unless one
takes special precautions. The present paper first simplifies
the expression for g for all orbits, polar or not, and then shows
how to avoid the difficulty altogether, by solving directly for
rectangular coordinates and velocities. These considerations
apply both to papers by the author and by Izsak on the original
spheroidal method and to the author's later papers incorporating
the third zonal harmonic into the spheroidal potential,

The present paper simplifies orbital calculations by the
spheroidal method for satellite orbits with all inclinations. Its
main points are the bypassing of the right ascension and the
avoidance of differences of almost equal gquantities, so that all
calculations become well-conditioned.
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1. INTRODUCTION

Objections have sometimes been made to applying the author's
spheroidal method to calculate a polar orbit of an artificial
satellite. The coordinates that appear are 0, for which the level
surfaces are oblate spheroids, mn, for which they are hyperboloids
of one sheet, and the right ascension g. The apparent difficulty
in a polar orbit arises only in ¢ and then only at a pole.

For an exactly polar-orbit I have already shown by limiting
processes in V196la and Vl961b(l) that the spheroidal potential
leads to g = constant, except at a pole, where it jumps by + 180°,
accordingly as we call the orbit direct or retrograde, respectively.
This is the expected behavior, just the same as for a Keplerian
orbit, so that no real difficulty appears. It holds whether or
not the model takes into account the third zonal harmonic, with
coefficient Jg.

Although the difficulty was easily disposed of, without
tedious numerical calculations, for an exactly polar orbit, one
might still claim that it remains troublesome for an almost
polar orbit. For such an orbit the calculation of & involves
a small denominator which almost vanishes near a pole. One then
may very likely lose accuracy in passing by the pole or have to
use special procedures which will increase computer time and
storage demands and which will not elsewhere be necessary. The
present paper shows how to avoid such difficulties.

2. THE AUTHOR'S SPHEROIDAL SOLUTION! WITHOUT J3

The notation in this section is that of V196la, corrections
of which are to be found in Walden and Watson 1967, p. 16. The
rectangular coordinates X, Y, 2 satisfy

5 21/2 21/2
X +1i¥Y = (p“+c°) (1-n") exp ig (1.1)
Z = pn (1.2)
Now by (8.50) of v196la,
g=0" +F, : (2)

1. The initial V refers to the author's own papers.
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where F is that part of the expression which varies rapidly near

a pole. Here Q' is given by Eg. (9) of the present paper and

F = KX (3.1)
K = |kl sgn a (3.2)
where
_l -
2 2. 2_2 2 2,-1 2 2 2. 2
K" = a3"ng"n," (a,"-a3%) " (ng My ~1-mp ™, %) (4)
But a1
2 2 2 2
Mg *+Np = l+ay” (-20yc”) (4.1 of V 1961a)
-1
2.2 2 2 2
No Ny = (a7 -a3%) (-20,¢%) (4.2 of Vv 1961a)
It follows that K2 = 1, so that
K = sgn az = +1 (5)

for direct or retrograde orbits, respectively, in order that the
right ascension g may correspondingly either always increase or al-
ways decrease. Then

g =0"+ X sgn ay (6)

is an exact equation for all orbits, with the spheroidal model.
This is in contradistinction to the results of V196la, where it
was only shown to hold for polar orbits. Thus the present work
simplifies all calculations with the spheroidal model.

To find the rectangular coordinates X and Y directly, without
first calculating ¢, ipsert {6) into (1.1), use

1

-2 —
exp ix = (1-n,% sin® §) (cos ¥ + if1-n?  sin ¥) (7)

from the last paragraph of V1961b, and then put n=nosin ¥ and
(1—7102)1/2 =| cos 1], from (6.4) and (4.7) of V196la. The
troublesome denominator (1—112)1/2 then cancels out, with the

result
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1
. 2 2 2 : :
X+iY = (p“+c‘) (cos¥ +i cos I sin V)exp iO! (8)

for all orbits, direct or retrograde. Here

_1
01 = Bota, (a,- 2)2n(aw 3 n2n2% sin 2
3+ay(ay o, o (B3V+ 33 My My sin ¥)
2 -1/2 4 .
-c a3(-2a1) (A3v+k§1A3k51nkv) (9)
Separately
1
2 2 2
X=(p“+c“) (cos ' cos ¥-sin ©' cos I sin W) (10.1)
1
2 272
Y=(p +c“) (sin Q' cos ¢ + cos Q' cos I sin ¥) (10.2)

These expression contain no singularities or rapidly varying
quantities, so that there is thus never any difficulty with a polar
or almost polar orbit, For a strictly polar orbit cos I and ay
both vanish, so that O'=B3 and

52 2 1/2
X+iY = (0°+c7) cos ¥ exp i83 (11)

3. Izsak's Spheroidal Solution

Although Izsak (1960, 1963) suggested using a slowly rotating
reference plane to avoid the polar difficulty, actually the same
transformations hold for his solution of the spheroidal problem.
For the sake of accessibility, I shall refer to his 1963 paper.

In making the comparison, note that my symbols are to be changed
as follows: § - a, n 2 0, ng ? S- and 83 + 0, others remain the
same. Then, with use of Izsak's Egs. (3), (91), (37), and (63),
one finds again the equivalent of the present Egs. (10) for the
rectangular coordinates X and Y. Note that Izsak's expression for
Q* contains (1—52)1/2 in the numerator and l-e2 in the denominator
of each term except O*.. The l—e2 in such a denominator does not
necessarily produce a singularity as e-» 1, since each (l-ez)_l
is multiplied by v=c/a and p = a(l-ez) is a quantity analogous
to the semi-latus rectum in a Keplerian orbit., In such an orbit

178



IMPROVEMENT OF THE SPHEROIDAL METHOD FOR ARTIFICIAL SATELLITES

p > 0 for any orbit that does not intersect the center of the
planet, even if e=l, Incidentally, the same powers of p occur in the
coefficients B3, A3 and the A3k's of v1g6la.

4, Isolation of the Right Ascension

In either solution, the quantity here called x is the sensi-
tive part of the expression for the right ascension g, If one

actually wants values of ¢ near a pole in an almost polar orbit,
it is better to rewrite Eg., (7) as

N

exp ix = (coszyfcoszl sinzv) (cosy +ilcos I|sin ¥)
12)

One thus avoids calculating the difference of two almost equal
numbers in the denominator. Then g is given by (6) and (12).

5. Velocity Components, with J3=0

On taking the logarithmic derivative of (8) and multiplying
the result by X+iY, we find

. . 2 . in
X+iy = p2p 5 + Q') (x+iv)+ (024+c?) (-sin¥ +i cos I cos Y)?el
p +c
(13)
so that 1
. 3 . 2 .
X = —%ﬂ—i— X—YQ'+(pz+c2) {-sin Y cos '-cos I cos Y sin Q')Y
p +c (14.1)
1
- - . 222 .
Y = —— Y+xQU'+(p“+c”) (-sin Y sin Q' + cos 1 cos * cos Q')Y (14.2)
p+c
Differentiation of (1.2) gives
Z = n§+pﬁ = né+nop cos ¥ % (15)

These equations contain neither small denominators nor differences

of almost equal quantities, Here
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1 1

. 2 2 -1

c= ae(ﬁ—) (02+Ao+B) (92+c2n2) sin E (16)

¢}
from p. 6 of Bonavito 1962, and
1 1

. : 2 2% 2..2.%2 2 221
n = nycos> U= (o -0g ) (1-g"sin"¥) (p"+c™M”) “cos ¢, (17)

from p. 15 of walden 1967, after a few transformations, Here
q=n0/n2. Then

=
NI

. _ -1
v = not(a,%-a,%) (0%4e?n?) T (1-a?sin’y) (18)

Finally, by Eq. (9) of the present paper,

-1
: 2 2,2 3 2.-4 i
Q'= a3(a2 -0q ) “0(B3+ 1€ Mo N, cos 20) %
21
2 2 4 .
-c (-2a,) (A.+ I kA, _cos kv)v (19)
b A A

Thus we also need v, With
-1
o = (1+e cos v) p, (20)
from (5.12) of V196la, where p=a(l—e2), we find

b = g-oz sin v v (21)

Comparison of (16) and (21), with use of the anomaly connection

N

sin E = g (1-e2) sin v (22)

then gives

N
=

6=é[ 1-e2] (02+np4B) 23
p ag Dz+c2n2

Eqs. (14),(15),(16),(18),(19), and (23) then give the complete
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algorithm for finding the velocity components in the spheroidal
model, when J3 is not included.

6. The Author's Spheroidal Solution, with J3

The notation in this section is that of V1966, corrections of
which are to be found in walden and Watson 1967, pp. 19, 20, 22,
27, and 31. With this solution

g = Q'+G sgn ag. (24)

where 0' is given in Eq. (41.4) of the present paper and where
G is given by Egqg. (150) of V1966, viz

1 21
-1 2 2
G = \a3[a2 u®(1-8) “[{h;+h,) xg+(hy~hy)x,] (25)
From Eq.(158) of V1966, we have 1 1
0 2 , .02
(hy+h,) X+ (hy -hy )% =277 (1-C,) [(1-c,)%-c; ] (B, '+E;") (26)

If u is a solution of the cubic equation (27) of V1966, then by
(32.1) and (32.2) of that paper

2
cu

" _ =1~ ooyl
C2 = agPg (16), Cl—2u6p0 (1 C2b) (1 CZ)’ (27)
so that
2 2
(1-c,)“-c 2
2 1 u 1 c
T . = 71_¢ o (1-s)-R | , (28.1)
1-C2 -S u agPg,
where
2 \2 2
1 c 26 1 c
Re(l--s)(25) s d- ) (28.2)
% 2P0 (Po> U 2P
By {27) of V1966, however,
1 c2
R==-1- (1-3) (29)
u agP,

Insertion of (29) into (28) then shows that
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(1-c) M a-c,?c,’] = (1-s) Hu-s) (30)
which, with (26), gives 1 1
1 T2 2

(hl+h2)xo+(hl—h2)yl =2 “(u-8) (1-8) (E2'+E3') (31)

Now, by Egs. (21.2), (18), and (26) of V1966, for all orbits,
direct or retrograde,

[
-

loglaytu = (u-5)? (32)

Then, from (25), (31), and (32),

1 L] .
G =3 (E2 +E3 ) (33)

for all orbits, polar or not, and direct or retrograde. This
is the same as the expression given in Egs.(159) of V1966 for the
sensitive part of ¢ in the case of a polar orbit. Here, however,
we have shown that it holds for all orbits,

To evaluate «, place E,'= EZ'(W+ﬂ/2) and E3'=E3'(W- %) into
Egs. (104) of V1966. The results are

e,-sin ¥ e +sin §
cosE'=—2——-——— cosE'=—3-————
2 l—ezsin [ 3 1 +e35in ]
(34)
1 1
2 2
(l-e22) cos * (l-e32) cos *
sin Ey' = e, sin ¥ sin E3' = ” Tiegsin v ¢
where
e,=(1-p) Yo, ey=1ee) o, oPmpiis (35)

with 0 £ e, < ezs 1, by Egs. (100) and (47) of v1966. Then, by
(33),

cos(E2'+E3') = cos 2G = 2 cos?G-1 (36)

From (34) and (36) it then follows that
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1

1 =
-3 — 2
2 2(1+e2e3 + /(l—ezz)(l-e32)) cos Y

cos G = k({) i : (37)

[ (1-e,sin §)(1+e sin ‘{)12_

where k(Y)=i1-

We now show that k(¥)=1 for all *. First note that E,'(y)
is related to y in the same way that an eccentric anomaly is re-
lated to a true anomaly. The same holds for E3'(y). Thus each
increases as y increases, by Eq. (160) of V1966, so that G52_1x
[Ez'(Y+"/2)+E3'(*'"/2)] is a continuous monotonically increasing
function of ¥.

Also, from the definitions, EZ'(y) and E3'(y) are both equal
to nn for y = nn. Thus

Lyn, (n=0,1,2...) (38)

G = ? for Y =(n+ >

so that cos ¥ and cos G both vanish for ¢=(n+ %)ﬂ. Now consider
a small interval (n+ %)n—e : ¥ < (n+ %)n + €, Since G always
increases with increase in ¥, the corresponding changes & cos
and A cos G are both negative if n is even and both positive if n
is odd. Thus k(}) > 0 over any such inteval. But k(§) = +1 for
all | and since cos G and thus k(V) are continuous functions of ¥,
it follows that

k(y) =1 for all ¥ (39)

Before we rewrite (37) with omission of k(?), let us first
simplify it. To do so, note that by (35) and by (48) of V1966,
which is

n="P+ Q sin ¥, (40)

we obtain

(1-e,sin §) (1egsin §) = (1-p%) "1 (1-n?) (41)
Now from Eq. (32.3) of V1966

2P = r(l-s)a, (42.1)
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where r
e -1
b = 2 J2 ‘J3l (42,2)
r = 2(1-c,s) tuy (42.3)
2 po *

Thus 6§ = 0(J2) and r = 0(1l). Egs. (35) and (42) then show that

_l [PE——
2 2 2 2,2
lteyjey + /(1-e,%) (1-e;°) = (1-P%)  (l45+(1-85),/1-r8% ) (43)
on inserting (39), (41), and (43) into (37), we find
1 _ 1 1
-3 2. 2 — 727 .2
cos G = 2 4(1-n°)  [1+s+(1-5)/1-r"6% ] cos ¥ (44)

We also need sin G in calculating rectangular coordinates,
To evaluate it unambiguously first note that

2 sin G cos ;3 = sin (E2'+E3')

(45)
=(l—ﬁ2)_1(1—P2)[(e3Ji-e2 -e, /i—e )+(V )51nW]cosW
(46)
by (24) and (31). Then from (35), (42), (44), (45), ana (46) it
follows that
_1 1
in g o 220-5)% {QUITrF ~/Tax6)+[ (148)/Tr8 +(1-P)/TrrBlsint}
- 1 _ 1
(1—n2)2 [1+s+(1—s)~1—r252 12 (47)
To check this, note that for J3 = 0 we have 6 =0, P=0, Q = Sl/z,
and S = sinZI, so that (47) then reduces to
21
. 2, 2 .
sin ¢ = (1-n°) “lcos Ilsin ¥, (48)

agreeing with (7) for sin x.
If one really wants values of the right ascension near a pole,

one can use (24), (44), and (47).
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It is then advisable, however, to rewrite the l—nz in the denomi-

nator by using (35) and (40). One finds

1- 2 = c052 —(P2+2PQ sin )+(1—S—P2)sin2 ,
n

(49)

resulting in the same kind of simplification near a pole as does

(12).

Near a pole in a nearly polar orbit the term -(P2+2PQ sinﬁ)

in (49) is much smaller than the positive term (1-S-P2)sin2Y. To

verify this statement, note that in a nearly polar orbit, Sxl, 0Qal,

P<<l, and near a pole |sin Y‘x 1. Then from (32.3) of V1966

2
<

-1 _$ 7
P=(1 - Su) — u({l-8) ¥ == (1-9),
2yPp Po 6400
so that
2 , 7
IP® + 2P0 sin ¢| X 3200 (1-8)
and

(1-s-p?)sin’y * 1-5

Thus Eg. (49) gives no trouble near a pole.

(49.1)

(49.2)

(49.3)

In rectangular coordinates we find from (1), (24), (44), and
(47)
1
2 2.2 -1
X = (p“+c©) [chos Q' cos § -H) /1-s sgna3sinﬂ'(H2+H3sinQ)]
(50.1)
1
Y = (p2+c2)2[Hlsin Q' cos § +Hi1/T:§ sgna3cosﬂ'(H2+H3sin*)]
(50.2)
and
z = pn-6 , (50.3)
from (1.2) of V1966. Here
_1 1
By =2 21+ 5+ (1-8) J1-r%s% )2 (51.1)
Hy = 2 o( /I8 - /T3 ) (51.2)
Hy = S{(1+p) VIT6 + (1-P)/T 7 £6 (51.3)

185



I MPROVEMENT OF THE SPHERO1DAL METHOD FOR ARTIFICIAL SATELLITES

and
2 '% 4
C'=B3"C a3(—2a1) (A3v +k:lA3k51n kv)
1
-1 2 3 2.2 .
+az0,"u (B3W- a C1C2Q cos ¥ + _3 C2 Q%sin 2¥), (51.4)

32
from Eq.{(150) of v1966. Like Egs.(10) these equations contain no
singularities, even for a polar orbit. Moreover they hold for all
oribts.
For an exactly polar orbit we have s=1, P=0, Q=l, a3=0, and
C'=B3. The X and Y equations then become

{=

X + iY = (02+c2)2cos v exp 183, (52)

as for the case J3=O of Eq. (l11). The Z equation, however, is
Z = opn-6, where & =(re/2)JEl\J3l, so that the orbit is still changed
by the Jj-

7. Velocity Components, with J3 Accounted for

From Eqgs. (50.1) and (50.2)

1

N

X+iv=(02+c?) [H1c05\h+iHIl(1—S) sgnay (H,+Hysint)Jexp in* (53)

Logarithmic differentiation of (53), with multiplication of the
result by X+iY, gives

1 1
+iY —Qé— PG i { 2+c2)2[—H sin*+iH—l(l—s)2sgna H cosW]@expiC'
X+iy=( 5 2+1‘ Y (X+1iY) + (0o 1 N JHs
p +c (54)
so that
1 1

- _pp . 2. 2,2 . S B ysinct ]y
X= —5" X-¥YC'+(6°+c7) [-H151nwcos c'-Hy (1-s) “sgna,H,costsin ¥

po*c (54.1)
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. 1 1
§= —Eﬂﬁi— Y*Xﬁ'¢(p24c2)2[—Hlsinwsinﬂ'+HIl(l—S)zsgna3H3cosYcosQ']%
£ +e (54.2)
Also
Z = qé + P (54.3)
by (15). Egs. (16) and (23) still hold,
é and v are as for J,=0.

so that the equations for
For Q' we find from (51.4)

. 2 - % 4 .
Qt=-c a3(-2a1) (A3+k§lkA3KCOSkV)V

=

-12 3 . 3 .22 e
tagaytut (Byt 3¢, Co0singr Tg CyTQ cos 24y

(55)
The new expression for @ is still lacking. From p. 14 of
Bonavito 1966, we find
i 1
. HPg 2,2
M= 0 cosy § = 5 | Ji-epncyn®) cos (56)
p+tcm
so that
1 1
2 2.2
PP\ (1+Cym-C,mT)
po= | =9} 2 (57)
y=i{= 2 22
P +C 1‘1
Here
2 2
281 (1-5)(1- =~ s)
1 2 Pg 3oPo 4
L 214 S (1-5)+ —F +0(3,7), (58)
u 20Po c 2
[1+ 3 (1-25)]
oPo
2_.2,2_ 2. _1_ 2 2-2
c = co 8 = Lo J2 a re J3 J2

(59)
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The equations of this section reduce to those of Section 5, if J3

is equated to zero.

8., The Improved Algorithm for the Spheroidal Model, with J3

Begin with Section 12 of V1966 and follow it through the
third line on p.45, viz, m = P+Q sin ¥, Instead of then calcu-
lating E2' and E3', however, replace that calculation with Egs.
(42), (50),and (51) of the present paper. This changed pro-
cedure not only simplifies the calculation of X, ¥, and Z for
near-polar orbits but bypasses the right ascension in all cases.
To calculate the velocities k, Q, and é, use Egs. (54) through
(59) of the present paper.
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Appendix I

Algorithm for Satellite Position Vector and Velocity,
if the Potential V = -up(p2+c2n2) g Jy = 0)

Given

W, r ., Jy a, e, I, Bl. ﬁz, 83

Compute once for each orbit:

22 . a2y 2022 2 2 2
ey =Ty J2' n0-51nI, p=a(l-e”), D=(ap < ) (ap € Mg ) +4a €5 Mg

2 -1

22 2 _ 2_2 -1
D'=D+a 9 (1—'r10 ), A= 2ac0 D

(1-1.2) (ap-c.?n.2)<0, B=c.°n 2p7ip'
o P=C5 Yo . o "o

(N1

1 _ _ .2 -1, -1 -1 __-1
b,= - =A>0, b_=B —a+b1>a, Pg= ~S5 3, (1 o )+aao pD D'

1T 7 2770 PR g

1 22 2

c. N c. D
2 _ __0 0 -2 -1
a2=(upo) ) Oy=a, 1 ~;E§5— cosI, m, = apD* a=n,",
°2 2 %
= (1+ cos“I)
R 2gPg
-1

. n
Also, with R (x) = x P (x 7),

compute

1

by 2,2
A-(le);;zz( / ( )Rn_z[(l-e)]

[

1
A= (1-e2) 7 T (y/p)"2, 00y /0y)R, [ (1-6%)%), where

(i P (cy/p) T
n=0

2n
Dy; = (b,/P) “ 7Py, (By /b))
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1 i-n 2i-2n 241
D,. .= EO(—l) (cy/P) (b,/p) Pong (By/Py)

[N
[ 7] d

ay=(1-e%)%p 7 r bR __[(1-e%)?]

m m+2

_ -l -2 _ 1.3 2 15 4 175 6
B, = 21 "q “[K(@)-E(@]= 3+ g a"+ 155 9+ Soa5 T -0

-1 .12 9 4. 25 &
p = 27 TR(Q) = 1+ Gar+ gy q '+ 55g 4.

o
i

. N 22 -1
ag' = aO Al+co no AzBle
v 2N
. - (2m) ! mil (2n) Mo
m 22m(m!)2 n=1 22n(n,)2
-1
Y (1- w232 -2m
By =1-(1-m;") . YaM2
m=
i 1
_3 4..2y2 -3_,_ 2 4 _ 3 -3, 2.2 4.2
All = (1-e")"p “e( Zblb2 p+b2 ) A12— 35 P (1-e7) b2 e
L 2
1,202 -1 -1 2.2, -2 9 2,.,e“, -3 3.4 2, -4
a,,=(1-e") "% e[blp +(3b,“-p,")p 5 b;b," (1+ )P T+ g b, (4+3e e )

1
= 2

.22 -lce 2,2y -2 9.2 2 -3 3 4, 2 4, -4
A,,=(1-e")"p (g (3p;7-b,)p ZeD1b,p T+ 37 by (67 e Yo )

1 1
= 3 =
_ 2,2-1 e 2 -3, 4 -4 _ .3 2,2 -5 44
Byy=(1-e)“p" g= (-byby"p T4, p ). Ayy= p5g (1-e7)7p Thyre
1
_1..2,2 -3 -1 3.2 2,1
Ay =(1-e )p e[2+b1p (3+ 7e°) - ( b +c0 )(4+3e )i
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1
5 2 4
.22 -3,e° 3. -12 -2e” 1. 2
A32-(le)p[4+5‘blpep(4+ )(b +co)]
1 1
3 -1 1-2,1, 2,2 o - Le2)2,750% (dy 2, 2
33—(le)De[-—blp -3p (5P, e ] Agy= - 33(1-e%) T Ve (b, ey )
21
_-1{_u\2 el -1 _-1
2nv1 aé (ao) R 27V Vy= 6 az'AZBZ ' e-_ao ae < e
=B, -c. 28 o ln 2B BIY, A =8 +B, o,  (a 4B, )A
1 "0 7272 0 7172 ¢ 1 7272
1
me -1 -1 22 -1
)‘3=(ad a,' BBy . Ay = ag T{AI¥CY MG AyB By )
1 -1
)‘_CZ_Ll_)z T T AT e T )
5~ % \a,! % o - 6‘ao°‘22' 7895
For each point at time t, now compute
1) Ms=2ﬂv1(t+xl) ws = vaz(t+k2)
2) Solve for EO: Ms+Eo—e'51n(Ms+Eo)=Ms
3) To find V! Place E=MS+EO in the anomaly connections
1
-1 . -1 2,2 .
cos v = (l-e cos E) ~(cos E-e), sin v = (l-e cos E) " (1-e“)“sin E

and solve for v = Ms+v0
4)

- - 1 ;
5) Compute M = X4v0+ 2 X551n(2ws+2w0)
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N S L TVINER S =3, 2_.
6) Then El—[l e cos(MS+EO)] M- e (1 e'cos(Ms+Eo)] M) “sin(M_+E,)

7) Place E=MS4F.OTF.l in the anomaly connections and solve for

v=MS+vo+vl

2

8) Then Y1=X6[A2vl+ z

k_1A2k51n(kMS+kvo)]+)\7sin(2ws+2t¥o)

9) Compute

2
1 ; 21 -9 "
[Alvl+k Alk51n(kMs+kv0)+X5{Blvl 5 chos(2¢s+2vo) 8 51n(2+s+2wo)

it o

M, =-a_
2= % 1

4
qd i B
+ 22 51n(4ws+4wo)}]

m = et -1
10) Then Ez—[l e'cos (M+E +E1)] M

0 2

11) Place E=MS+EO+81+E2 in the anomaly connections to find v=Ms+v0+v1+v2.

12) Then Yy, = _[A_v_<A_.v.cos(M +v.)+2A.. v cos (2M _+2v
2 6772 2171 s 0 2271 s

2 o)

+A23sin(3Ms+3v0)+A2451n(4Ms+4vo)]+2x7[wlcos(zws+2wo)

+ Egi sin(2y_+2y,) - §%§ sin(4y_+41,)]
Then

E=MS+EO+E1+E2, v=Ms+vo+v1+v2, ¢=WS+YO+¢1+Y2
13} p=a(l-e cos E)=(l+e cos v)_lp, n=n,sin ¥
1
2

4
1 3 2 -4 . 2 p )
(B3W+ 32 Ng My sin2y)-c oy ag (A3v+kElA3ksln kv)

14) Q'=p3+a3a2

Then the rectangular coordinates are given by

1
2 2.2 : .
15) X=(p +&q )" (coe Q'cosy-sin Q'cos I sin W)
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| Lol

16) Y=(02+c02)2(sin Q' cos ¥ + cos ' cos I sin )

17) 2 = pn

To find the velocity components, compute

-7 L
{ 2 2 2
18) v = 2 u(l-e )J {0 +A0+B)
o ao p2+c 2ﬂ2
0
19) 6 = s ozsinv v
1
. az'(l-qzsin2W)2
20) ¥ = 7, 2.2
pT4cy M
21) Dr=aa37t (By+ T2 mpZngtcos 20)i
- Pa, [ ) E(A + g kA,, cos kv)v
313, 370y 3k
Then
. 1
22) X= —522—3— X—Yﬂ'+(pz+c02)2(-sintcosﬂ'—cos I costsinn')@
e 4y
. 1
23) Y= —239-—2 Y+xﬁ'+(02+c02)2(-sinv sin{i'+cos I cos ¥ cos Q')¥
p“+c
0

24) é = n6+noo cos @
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Appendix II

Algorithm for Satellite Position Vector and Velocity,
if the Potential V = —u(:+n6)(02+c2n2)_1(J3#0)

Given u,re,Jz.J3,a,e.S,61,52,63

Compute once for each orbit

b3, 2 2

2 2 _ 1 3 2 g2 _ .2
cy =T, b= 5Ty 3, c¥=c 76", p=a(l-e”)
2 2 2
2 2 8a“c” ;2 { c
- - - 5 c - s(1-
. = 2ac” (ap-c“8) (1-8)+ i 1+ ap (35-2) ¢S(1-5)
(ap—cz)(ap—c25)+4azczs+ ﬁgi 62(33p-4a2—c2)s(1-s)
P

w
]

2 -1 2 _ 1 _ =
c“+(2a) “(ap-cT)A, by= 5 A, ao—a+b b.,=B

-1 2 _
Po=3g (B+ap-2Aa-c”), uz—(upo) , u from

2 2
'33) (1-s)1- S s) , 1
-1 c \Pg oPo c -1,2
u =l+ — (1-8)+ , C,= u, A,=+a, (1-Su )
2 2 %
*ofo [1+ —S— (1-25)]? ®ofo * °
agPg + for direct orbit
- for retrograde
2 2 2
c -1 2% C c -1 &
c, = (1- Su) — u(l- u), P=(1- su) — u(l-s),
1 3oPo Py agPo 25P )

With Rn(x)=xnpn(x°l), compute

—

L 1

%)% T (5, /00, (o) /0,08, ol (1-e?)]
n=

Al=(1—e )

gho

1
2.2 -1 2 n 2,2
A,=(1-e%)“p nzo(bz/p) Pn(bl/bz)Rn[(l—e )

]
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l 1
o 1
2
‘ A, =(l-e ) P -3 EO n m+2[(l—e )2], where
’ 1 . .
: - i-n 2i~2n 2n
| Dy = E (17 (e/p) (b,/p)“"p, (b, /b,)
2i-2n

n+l
(b,/p) .1 (®,/b,)

1 .
_ i-n
Dai+1” nzo(_l) (c/p) Pons

N[
[

3 2 -3 2 4
All_ r (L-e")"p e(-2b1b2 p+b2 ) A

|

_ 2,2 -1 -1 2,2, -2 9 2 e -3, 3 4 2,-4
Ay = (1-e°)°p “elbjp +(3b)"-b,")p "~ 5 byD, (14 £ )p T+ Zb,7 (443e%)p")

2
1-22y2 —lre 2. 2,-2 9 2 2 -3, 3. 4, .2 4 -4
A,,=(1-e")"p [8 (3b,°-b,")p - F e byb,"p T+ 35 b, (6e“+e)p ]

N
-

3 =
_1..2,2 -1 e’ 2 -3, 4 -4 _ 3 2,2 -5 4. 4
Ay3=(1-e%)"p © £ ( b,b,"p “+b, P ), Ay4= 756 (1-¢“)7p "b,"e

(I

2,2 -3 -1 3.2y =21, 2, 2 2
A3 =(1-e")%p “e[2+b;p " (3+ F e%)-p" (5 b, +c”) (4+3e”)]

1
= 2 4
—(1-w2y2 -3;e“ 3. -12 -2 3 2,,1, 2 2
A32—(l e“)p [4 + 3 bjpre-p ( + 5 e ) (5b, +e )]
1 1
2-3 3 -1 1 2 2 1 2
33=(1-eh) % gm -1 52 b %0c?)], Bye= - 33 (1-e2) % > (3b, 2uc?)e?
Q = (P2+S)l/2
-1- L 3,2, 1
By=l- 5 CP+(g C;"+ 5 C )(2 0%+ 62 ©2 %9 +0(J2 )

15
pRe)

i 1 3 2 3 2, 4 26 3
B; =3 Q+P - 7 CPQ +€Z(4C2+3Cl )o'+ 155 C, 0 +0(J,

8
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= -1, _3 .2 3 2 1 42 3
B3_ 5C2 8 C]. 8 Cz (1+ 2 Q )+0(J2 ).
2 3 4
_ 3 3 Q9,1 4 - = 2
By1= 72P2+ § €107, Byp= -(3 + § C20). Byy= -C) 37, By,=C, ¢
= - 2 3,1 R | 2,.2 2.4
By1= ~CoPQ+ 15 C;C,07+ 5 €,Q, B,,= 32[(4c2+3cl Yo +3¢,“Q"]
N 3 =3 .24 -1 -1
By3™ 7 16 C1%2Q ¢ Byp= 75 G Q. r=2(1-C,8) Tup,
1
2 -1 w\? -1 T2 -1 1
(. ] - . — - ey
ag -a0+Al+c A231 32 , Zﬂvl— ag (a0 ) T, 2ﬂv2_a2u AZBZ (ao y -,
e' =a e a_l
0
-1
2 1 1 1 1 (u\2 - % 1
=8_- - g = ~ - = [ H¥_ -
Xl—al c Bzaz Bl B2 , X2—81+82a2 (a0+A1)A2, X3- (ao ayu A2B2
1 1 s L
-1 2 -1 _fu\c 212 fu 2 -1
X4—ao (Al+c A281'B2 ), Xs- ag ¢ ay ", X6— ag a2u Bz R
_1 1% 1 1
H, =2 2[145+(1-5) (1-r212)?] H,= %‘Q[(l—ré)z-(l+r6)2],
1 1
2
Hy= 3 [ (14P) (1-x8) 4+ (1-p) (141 8) 2
Compute for each point
1) MS=2nvl(t+X1), vs=2nv2(t+x2)
. - 1 3 o=
2) Solve for EO' MS+E0 e 51n(Ms+Eo) MS
3) To find Vo! Place E=Ms+EO in the anomaly connections
4) wO=X3vO
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6)

7)

8)

9)

-1
10) Then E2—[1 e'cos(Ms+Eo+El)] M

IMPROVEMENT OF THE SPHEROIDAL METHOD FOR ARTIFICIAL SATELLITES

- - _a71 ; )
Compute M;= -A,v, -8 }531251n(2¢5+2v0)
-1
Then E,=[1-e'cos (M +E.)] M -le'[l—e'cos(M +E.) ] 3m 2ei (M_+E,.)
1 s 0 172 st 1 SINIM FE,

Place E=MS+EO+El in the anomaly connections and solve for v=Ms+v +v

0 "1

-1
B,

2
. -1
Then vl-XG[A2v1+k§1A2k51n(kMs+kv0)] B, B, cos(Ys+?O)-Bzz

sin(2v5+2yo)
2
= —1 % t
Compute M,=-a, [Alvl+k§lA1k51n(kMs+kv0)+k5{Bl ¢1+Bllcos(Ys+To)

+2B) ¥, 008 (2§ +2Y)+B, scos (3Y_+3Y,) +B, ,sin “%*”o)} ]

2

11) Place E=MS+EO+E1+E2 in the anomaly connections to find

V=MS+VO+V1+V2

12) Then §,=)\ [A2v2+A 1V, 08 (M_+v )+2A22vlcos(2MS+2vo)

; : -1 :
+A2351n(3Ms+3v0)+A2451n(4MS+4VO)]-B2 [-B, ¥ysin(y +yy)
+2B,,§;C0s (2§ +2¥,) +B, 3cos (3Y +3¥,) +B, sin (4} _+4% )]

Then E=MS+EO+El+E2, v=M +v0+v +v . Y= §s+qo+ql+y2

13) p=a(l-cos E)=(l+e cos V)_lp, N=P+Q sin §

14) Q'=p;3-c a3(ﬁ—> (Agv+ T A

-1
2 4 3
5 L RakSin kv)toga, T (Bsﬁ’ 4 CRcosy

3
t32¢ 2Q sin 2y)
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Then if sgn = +1 fcr direct or retrograde orbits respectively,
the rectangular coordinates are

1
S D
[chos (i'cosy-H, " (1-S) sgnay (Hy+H

N

15) X=(02+c2) 3sinw)sin )

—

1
2

16) Y=(p +c2)2[HlsinQ'cosw+HI1(l-S)zsgnaB(H2+H sin¥)cosn']

3
17) 2=pn-56

Velocity components

1 1
- a p(l-e?) % (p%+ap+B)?
18) v= 75 7 22
0 P 4+4Cc M
19) é= g‘Dzsinv v
L 1
. MPg 2 2 2271 2.2
20) ¥ o= e (P +c™n") (1+C1Y]-C27\ )
-1
: 2 [u V 2 :
2l) O'= -c"a (A,+ T kA, cos kv)v
3 ag 3 k=1 3k
1

-1 2 3 CoL. 3 2.2 :
+a3a2 u (B3+ 2 ClCZQ sinly+ 16 C2 Q%cos 2¥)V
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1 1
22) X= 2992 x—y("/v-+(pz+c2)2[—Hlsin\hcosﬂ'—Hil(l—S)ngna3H3cosﬂJsinQ']\lv
pT+c
. 1 L
» _H_ g 2 2 2 . . 1 ‘1 2 N M
23) Y= 53 Y+XQ ' +(pT+c”) [—H151n‘b51n0 +Hy (1-5) sgna3H3cosd’cosO Ju
p 4c

24) 2= np + pQcosV ¥
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DEPENDING ON A SMALL PARAMETER

by

Ahmed Aly Kamel

Stanford University, Stanford, California

ABSTRACT
The theory of perturbation based on Lie transforms
is considered. Deprit's equation is reduced to a
form which enables us to generate simplified general
recursion formulae, These expansions are then modi-
fied to speed up the implementation of such pertur-
bation theory in the computerized symoblic manipula-

tion.

1. INTRODUCTION

If a system is described by a Hamiltonian depending on a small para-
meter, then canonical transformation can sometimes be obtained using a
von Zeipel generating function (See for instance Brouwer and Clemence 1961),
In such a case, the transformation is implicit because the generating
function is in mixed variables (the old coordinates and the new momenta).

The shortcomings of von Zeipel's method, when the generating func-
tion itself depends on a small parameter, were felt by Breakwell and
Pringle (1966), and Deprit (1966), when they used a von Zeipel generat-

ing function to remove the short period terms from the Hamiltonian of
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a particle in the neighborhood of the triangular points in the restricted
problem of three bodies., Breakwell (See Schechter 1968) recognized,
after comparing with Deprit et al (1967), that the long period part of
the second order Hamiltonian derived in mixed variables was misleading,
and that it was possible to obtain a different representation in terms

of new variables only. Using this suggestion, Schechter (1968) obtained
a more valid second order expression. Deprit (1968) attacked the prob-
lem using Lie transforms and extended the expansion to include higher
orders. In this paper Deprit's recursive algorithm is reduced to a form
which enables us to generate simplified and modified general formulae

(Section 3 and Section 4).

2. BACKGROUND

A Lie transform may be defined by the differential equations

g_’; = W, (x,X, 850 (2.1a)
g—i = -Wx(x,X,t;e) (2.1b)
g_te -0 (2.1c)
:—z = wt(x,X,t;e) (2.1d)

with the initial conditions x =y, X =Y, t=1t, and F=0 at ¢ = O.
The foregoing equations define a canonical transformation. This can be

shown as follows: for any ¢, the differentials dx, dX, ¥, 3X, and
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&F produced by the initial changes dy, dY, dt, 8y, and BY satisfy

*
the equation
4 [ax.5X - dX.&x - dtdF] = 0 . 2.2)
de

Hence, dx.8X - dX.®x -~ dtdF is independent of ¢ and equals its value

at ¢ = 0, so that for F = H(x,X,t;¢e) - K(y,Y,t;¢)
%.8X - X.8x - 8H = y.8Y - Y.8y - K. (2.3)
Therefore, if x and X satisfy the canonical equations
X =H,, X = -H_, (2.4)
then, also y and Y satisfy the canonical equations
y=K_, Y=-K . (2.5)

Now, take any indefinitely differentiable function f(x,X,t;e) that can

be expressed in terms of x,X,t and ¢ as a power series in ¢, in

the form
o« n al'l @« n
f(x,X,t;8) = z ni L rx,X, 150 = 2 ne_ £ (x,X, 1)
1=0 de =0 (2.6)

*
Notice that

d

—dx = dw_ = W_ . .

qe X X Xx dx + WXX dX + thdt N
d

—8x = OW_ =W_ .8 + W__.8X , etc,
de X Xx XX ’
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then, in terms of y,Y,t, and € asa power seriesin €, it takes the form

© €n dn 0 en ( )
£(x,X,t;€) = z = [ x50 = z = 77,1, 0
n=0 de €=0 n=0
2.7
where
F
f (x,X,t) = |— £(x,X,t;¢) , n > 0; (2.8)
n 30 =
€ e=0
df of dx dax
- ; = — — 2.9
de x,X, 15 0) et fx de T fX de °’ @.92)
and
(n) a”
f (y,Y,t) = — f(x,X,t; ) ,y >0, (2.9b)
de e=0
Notice that
f (x,X,t) = £ X,t;0 d f(o) = f ;0
oGOX,E) = £(x,X,t;0) , an (v,Y,t) = £(y,Y,£;0) .
\
Using Eqs. (2.1a) and (2.1b), Eq. (2.9a) can be written as
df _ o
EZ = ?E + Lw f (2.10)

where Lw is a linear operator called Lie derivative generated by W,

and is defined by

Lw f=(H;w) =1 W - fX.W (2.11)

Taking f = x,X, and F in Eq. (2.7), and using Egs. (2.1a), (2.1b),

and (2.1d), one obtains the following

> € (@)

x =y + 2 =V U, (2.120)
n=1
> & ()

X =Y+ z = v My v, (2.12b)

=}
1l
—
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- & L
n
H=K-E%R (y,Y,t) , (.
n=1
where, for n > 1 we have
n-1
(n) d
y = 1 WX> (2.
de e=0
n-1
Y(n) _ (4 W @.
n-1 'x
de =0
n-1
R(n) __[4 W . .
den-1 t
e=0

In particular, for a generating function W of the form

Wx,X,t;¢) = z SW XY, @.
n=0

and f(x,X,t;e) of the form given by Eq. (2.6), Eq. (2.10) yields

n
af _ 2 £ D ox,0 2.
de n! 'n
n>0
with
1 25 n
= 2,
fn G, X, ) fn+1 + cm Lm+1 fn—m (
O<m<n
where
|
P n! ) @

m  (o-m)yim!
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and

Lf= (W), p>1 . (2.17b)
p P -

In general, for k > 1, n > 0, one obtains

d E
-—k z a7 I (xX t) (2.18)
n20
with
(k) o (k-1) n (k-1)
£ 0%, = e z SRR AT A 2.19)

o<m<n

Now, letting e = O in the above equation we get the following. (For
the remainder of this paper, this equation will be referred to as De-
prit's equation.)

fx(lk)(y,Y,t) = & 2 A gD (2.20)

n+1l m m+l n-m
O<mgn

where

» P2>1 . (2.21)
Notice that

(k) (k)

0)
fx(1 (y,Y,t) = fn(y,Y,t), and f.7(y,Y,t) = £ (y,Y,t) .

Deprit's equation, together with the functions H(n), R(n), y(n),

n
and Y( ) can be best visualized from the triangles of Fig. 1 and Fig. 2.
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L / () / (2) 7(3) @

FIG. 1, RECURSIVE TRANSFORMATION OF AN
ANALYTIC FUNCTION UNDER A LIE TRANSFORM.
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Ho =H(0)

2

MONO)

ORI R PO

Frr77 7T

H=-TRIANGLE R-TRIANGLE

FrrT T

y-TRIANGLE Y-TRIANGLE

FIG. 2. TRIANGLES FOR THE HAMILTONIAN H, THE COORDINATES y,
THE MOMENTA Y, AND THE REMAINDER R.
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Finally, the inverse transformation can be written as

n

o
vo=x + z % x ™ x,x, 1) (2.22a)
n=1
- & L
Y =X+ z Sxexn . (2.22b)
n=1
To find the relation between the x(n)'s and y(n)'s, X(n)'s and Y(n)'s,

one may eliminate x-y and X-Y between Eqs. (2.12a), (2.12b), and

(2.22), and define the functions q(x,X,t;¢) and Q(x,X,t;¢) as follows:

n

DN > & _(n) _ = & (m
ax,X,t; o) = Z S xMext = - 2 AR A (2.23a)
n=1 n=1
o R - N ¢ e &
X,X,t;0) = S Max,0 = - Z L S S A5 (2.23b)
n= n=1
Therefore, for n >1 we have
a = xPexn, o™ - yPovn (2.242)
Q = P ex e, @ - - vy P Gvy (2.24p)

3. SIMPLIFIED GENERAL EXPANSIONS

Given the functions fn, .., and f Deprit (1968) construc-

fn—1’ o’

f(n)’ f(n—l), (0)

ted the required functions .., and f by introducing

(k)

the auxiliary functions fn and by moving recursively from the left

diagonal of Fig. 1 towards the right diagonal. One might as well
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(n) f(n—l) f(n—2)

construct the function f only in terms of f and

n
.y f(o) or fn in terms of

f(n)’ f(n-l)’.“ )

and f (which will
be useful in the construction of the inverse transformation) by intro-

ducing a suitable linear operator. To show how this can be done, let

us write Deprit's equation as

G _ en

fn n-1

g
il
g
(o]
5
i
"
=
z
=}
v
-
3
v
o
~
w
-
2

By successive elimination of the functions on the right hand side of

the above equation one would eventually obtain fik) f(k+n),

f(k)‘ (k)

Thus, one may assume the following form for fn

in terms of

f(k+n—1)

ey

n N
fr(‘k) = g Z c;'cj g Qe300 >1, k>0 , (3.2)

j=1

where GJ is a linear operator and is a function of Lj’ ..., and

Ly
L1' Substitution of Eq. (3.2) into Eq. (3.1) yields the following re-

cursion relation for the linear operator Gj

J-1 .
= - 1 . .
o, = L, z S TR TS (3.3)
Om<3-2
For example
c.1 = L1 (3.4a)
G, =L, - L L (3.4b)

o
i
ol

- L1(L2 - LlLl) - 2L2L1 (3.4¢)
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Using Eq. (3.2) with f =y and Y, and taking k = 1, we obtain the fol-

lowing general recursive relations for y(n) and Y(n) of Eqs. (2.12a)
and (2.12b)
(n) n-1 (n-j)
¥ =W+ ¢ 6y Ponsa1 o, (3.52)
1<j<n-1
y™ W s Z ™o v as (3.5b)
ny J J -
1<j<n-1

Using Eq. (3.2) with f =q and Q of Egs. (2.23a) and (2.23b), and
(n)

taking k = O, we obtain the following general formulae for x and
Y
@y, Z c;_’ o y D a s (3.6a)
1<j<n-1
@ -y N g vy (3.6b)
- J 3 -
1<j<n-1

Now, x(n)(x,X,t) and X(n)(x,X,t) of Egs. (2.22a) and (2.22b) are

simply given by

X(n)(x,X,t) = [x(n)] y =x , (3.7a)
Y = X

™ ox,t) = [x(“)] y=x . (3.7b)
Y =X

Next, consider an indefinitely differentiable function ' v(x,X,t)

not explicitly dependent on €. Using Egqs. (2.6), (2.7), and (3.2) with
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fo = v(x,X,t), fn =0 for n>1, and k = O, we obtain the following

general formula

© n
vix,X,t) = 2{ ET vy, 1,0 (3.8a)
n=0
(n) n (n-3)
= c. G ,Y,t) , n>1 3.8b
AT AR S (3.8b)
1ijfn
where
v(o)(y,Y,t)=V(y,Y,t) . (3.8¢c)

Also the inverse relation can be written as

n
v(y,Y,t) = v(x,X,t) + ET v ox, 0, (3.92)

(gt

=
1}
—

elimination of v(y,Y,t) - v(x,X,t) between Egs. (3.8a) and (3.9a), and

using Eqs. (2.6), (2.7), (3.2) with k = O, and (3.8b) leads to

V(n)(x,X,t) = - [G v(y,Y,t)] y =x . (3.9b)
n Y =X

Lastly, given the Hamiltonian H(x,X,t;€) in the form

e n
H(x,X,t;€) = Z (X, ) (3.10)

n=0

one can construct the transformed Hamiltonian K(y,Y,t;€) in the form

0 n
K(y,Y,t;€) = 25 SK 5,7, (3.11)
=0

n!

214




EXPANSION FORMULAE IN CANONICAL TRANSFORMATIONS

and this can be done as follows. Using Eq. (2.7), H can be written as

= & . (n)
H(x,X,t;€) = z Saa,yr,0 . (3.12)
n=0

Combination of Eq. (3.12) with Eq. (2.12¢) and Eq. (3.11) yields

K. =H (3.13a)

K =H + R , n>1 ., (3.13b)
Setting k =1 and f =H + R in Eq. (3.2) leads to

n
AL R G, K . ,n>1. (3.14)
n n n+l J 3 n-j+1 -

j=1

But from the R and H triangles of Fig. 2, we have

AW
1) _ n+l
R =-—x— ,n>0 . (3.15)
n
1) _ n
Hn = Hn+1 + é Cm Lm+1 Hn—m , > o . (3.16)

Therefore, the simplified general recursive relation of the transformed

Hamil tonian is given by

K =H (3.17a)

(3.17b)
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where
DW R
n n
—_— = - H 1 . 3.18
bt - o "2 G.18)
For example
= - 3.19a
K =1 DWl/Dt ( )
- . 3.19b
Ky =H, + LH + G K, DW2/Dt ( )
K, =Hy + LH + 2L H  + 26K, + G,K, - DWs/Dt (3.19¢)
K, =H, + LH + 3L H, + BLH, + 3G K, + 3G K, + GuK, - DW4/Dt

(3.194d)

the operators G G and G3 being as defined for Eqs. (3.4a) to (3.4c).

4. MODIFIED GENERAL EXPANSIONS

In the simplified formulae obtained in Section 3, the rate of in-
crease of the number of the Poisson brackets with respect to the order

of perturbation can be reduced if one uses intermediate functions like

n
i,n = ijn or ij( ) to be saved for later use in computation, Thus,
’

this leads to the following recursive relationships:

a) For y(n), x(n), Y(n), and X(n) of Eqs. (3.5) and (3.6)
(n) 2 n-1
y =W o+ C. . . 4.1
ny i Vi .12
1<j<n-1
(n) (n) z n
x = -y + C. vy, 3 (4.1b)
J 3,07
1<j<n-1
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(n) Z n-1
Y = -W + C N 4,
ny 3 Yimeg (
1<j<n-1
x® - y™ z c v, “.
J "3,n-3
1<j<n-1
where
i) z j-1
= 4,
yJ',i Lj y Cm Lo Yj-m-1,i (
O<m<j-2
(i) 2 j-1
= 4,
YJ,I LJ ¥ Cm m+1 Yj—m—l,i H (
O<in<y-2
® For v™ and v™ of Eqs. (3.8b) and (3.9b)
ML Z v, (4.
J J,nd
1<3<n
V(n)(x,X,t) = - [vn 0] y =X 4.
’ Y =X
(i) Z j-1
= - 4.
vj»i LJ' ‘m+1 vj—m-l,i ; (¢
0<m<j-2
(¢) For K of Eq. (3.17b)
DW
n-1 n-1 n
K =H + z c L H K —
n n -1 3n-j T J,n-a') ot * 21
j<n-1
s @.
where
- _ J-1 4
X = Lk Lm+1 K‘j—m—l,i .
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Notice that for Ki =0, KJ ;= 0 for all j's. For example,
)
= - 4.6
K2 H2 + L1H1 + Kl,l DW2/Dt ( a)
= - 4.6
Ky Hy + L H, + 2L2H1 + 2x1'2 + Kz'l DW3/Dt (4.6b)
= - t
K, =Hy + L Hy + 3L,H, + 3LH, + 3x1’3 + 3K2,2 + x3’1 DW4/D
(4.6¢)
where
= 4.7
K1 W5 (4.72)
K =LK, , K =LK - LXK (4.7b)

1,2 1727 2,17 21 11,1

Ky g =LKy Ky 5 =LKy - LK 2
(4.7¢)

- - -2 )
Ky q = LgKy — LiKoy ~ 2Ry g

The construction of the transformed Hamiltonian using the scheme pre-
sented by Eqs. (4.5a), (4.5b), and (3.18) is simpler and requires less
computer time and storage than the scheme presented by Deprit (1968).

A considerable amount of this reduction is due to the fact that the sums

1™ 4 2™ s well as Hél) + Ril) in Egs. (3.13b) and (3.14) were

considered as single quantities as if the transformed Hamiltonian was

(n)

constructed from a single triangle whose end products are H(n) + R
and whose starting elements are Hil) + Ril), Further reduction in the
computer requirements can be achieved if some of the Ki‘s vanish, in
which case Kj,i also vanishes for all possible values of j.
Equations (3.17) or (4.5) and (3.18) are directly applicable to

nonlinear resonant problems in which Ho is a function of only the
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action variables X, while Hn(n > 1) depend trigonometrically on the
angle variables x and possibly the time t. It is desirable to trans-
form to new variables so that the resulting Hamiltonian contains, to-
gether with the new action variables Y, only certain slowly-varying
"long-period" combinations of the new angle variables y and the time

t. Equation (3.17) or (4.5) may be used to define the Wn's successively
so as to remove all "short-period' terms from the Kn's; such a Wn is
unique up to an arbitrary additive long-period term.

The equations obtained are now being used in a fourth-order analysis
of the motion (stability and periodic orbits) of a particle in the neigh-
borhood of L4 of the earth-moon system in the presence of the sun. In
this problem, the following parameters are treated as first order small
quantities: distance from L4/earth-moon distance, eccentricity of
the moon's orbit around the earth, moon mass/earth mass, mean motion of
the sun/mean motion of the moon. The additional parameter (earth-moon

distance/earth-sun distance) is treated as a second order small quantity.

E; ACKNOWLEDGEMENTS
The author gratefully thanks his advisor, Professor John V. Breakwell,
for his helpful suggestions and assistance. The suggestions and comments
of Dr. Andre” Deprit, Dr. Ali Nayfeh, and Dr. Jacques Henrard are appre-
ciated.

This research was supported by the National Aeronautics and Space

Administration, under Contract No. NsG 133-61,

219



EXPANSION FORMULAE IN CANONICAL TRANSFORMATIONS

REFERENCES

Breakwell, J. V., and R. Pringle, Jr., 1966, Progress in Astronautics,

Vvol. 17, Academic Press, Inc., New York, pp. 55-73.

Brouwer, D, and Clemence, G. M., 1961, Methods of Celestial Mechanics,

Academic Press, New York, New York.

Deprit, A., 1966, Proceedings of I.A.U., Symposium No. 25, Academic Press,

pp. 170-175.
Deprit, A., Henrard , J., and Rom, A. R. M., 1967, Icarus 6, 381-406.

Deprit, A., 1968, "Canonical Transformations Depending on a small Para-
meter", Boeing Scientific Research Labs., The Boeing Company, Seattle,

washington, document No., D1-82-0755.

Schechter, H. B., 1968, AIAA Journal Vol. 6, No. 7.

220



THE FORMAL SOLUTION OF THE n-BODY PROBLEM

By P. Sconzo
and
D. Valenzuela
International Business Machines

Cambridge Advanced Space Systems Department
Cambridge, Massachusetts

221



P. Sconzo

D. Valenzuela

THE FORMAL SOLUTION OF THE n-BODY PROBLEM

ABSTRACT: The power series solution of the equations of motion of
a system of n point-masses is presented. This solution is a formal
one in the time domain. The origin of the series expansions is a
non-collision point. A procedure has been developed using three
fundamental recursion formulas, one of which involves a special
differential operator. Some of these analytical formulations have

been programmed in the PL/I FORMAC language. Results are presented.

Both authors are located at the IBM Cambridge Advanced Space Systems
Department, FSD, Cambridge, Massachusetts.
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Recent applications of the methods of celestial mechanics to prob-

lems of space flights impose severe requirements upon the quality

of the solution. Quality stands here for high level of accuracy

in the computed position of a space probe when its motion takes

place under the perturbations exerted by many bodies. Means to

satisfy those requirements are offered by well-known numerical in-
tegration techniques which can be applied to the equations of motion.
Although efficient from a computational point of view, these tech-
niques are regarded in general as being a rather crude approach to

the solution of the problem. Besides, it might be desirable, from a
theoretical point of view, that the solution be obtained in an analytical
form, for instance that it be constructed as a time-power series. In
this paper we show how this analytical goal can be achieved. We will
glve a recursive method to construct the terms of these series up to any
desired high-order power of the independent variable (t). The formal
solution thus obtained could be used to cover an arc of the trajectory
much longer than the step used in any numerical integration procedure.
This solution is valid, of course, in a neighborhood of t = 0, origin

of the series expansion, which is assumed not to be a collision point.

The cruclal problem to be solved 1s to construct the series expansion
of the inverse cube of the distance between bodies. This is achieved
introducing some auxiliary functions and operating on them with an "ad-
hoc" differential operator. The end result provides the coefficients
of the series as functions of the initial conditions which must be sat-

isfied by the equations of motion.

We consider the motion of n bodies in a Newtonian potential field.

Let mi(i = 1,2,3,...n) be the masses of these bodies, to be considered
as point-masses, and Xys Vg 2y their Cartesian coordinates referred to
an inertial reference frame. For the sake of generality, we suppose
that none of the masses is negligible and that none of the bodies is

constrained to move along a prescribed trajectory.
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The equations of motion can be written as follows

(6 (2). S
Dk, = k§_1mj Myyoy (141
where
(2) My " T 1
3 r2 - az + bz + c2

1j 13 14 13

(4) a,, = X, ™ X

19 " Xy T Xy Pyg Yy UV gy " E T

3 1
and similarly for vy and z,. The symbol D stands for %E' and k 1is
the gravitational constant. If the fundamental units of length,

mass and time are appropriately chosen, then we can take k = 1,

The set of equations (1) constitutes a system of 3n differential equa-

tions of the second order.

Let now
4 xg0 = % (0)s xyy = (Bx))g

be the initial conditions. The formal solution of (1) as a Taylor
series in t is

b v
(6) x - ) x, ¢

vm=Q

where

1, .(v)
v < CT(D x1)0

The first two coefficients in (6) are given by (5). The third coeffi-
cient x,, is given by the right-hand side of equation (1), evaluated
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at t = 0 and multiplied by one-half. Then, the successive coeffi-
cients can be constructed by an iterative procedure. In fact,

setting
T -
=" ijv
we get from (1) by a well-known procedure
(v= 0).

m M a
® 1,0+ (v+z>(v+1)§_1 ;Z,-o 13p"13v-p,

This equation can be used recursively after we have learned how to

compute uijl’ uijZ""’ uijv in terms of the initial conditions (5).

We put emphasis on the fact that there are %ﬂ(n—l) functions uij which
should be handled simultaneously due to the coupling of the subscripts
1,j. This implies that the algebraic manipulations to be performed
will be very lengthy, even for relatively small values of n. We will,
however, omit from now on the subscripts 1,j. The notation used by
Sconzo [1] in his investigation on the tridimensional non-restricted
three-body problem will also be used here.

We introduce the first of our auxiliary functions by the definition

9) s = aDa + bDb + cDc

For compactness we rewrite s as follows

(10) s = S[aDa)

where the symbol S{...] has the meaning of a sum extended over terms
in b and ¢ similar to that in a.

Then, successively differentiating the function u it is not difficult

to recognize that

a1 u, = oW = - 3Bep +q)

where PV is an expression in o,ec and the derivatives of s of order
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higher than the second, and Qv a polynomial in o,¢ where p, o, and €

are new auxiliary functions defined as follows
-2
(12) pmr ,0=ps, €= pDs

In order to prove (1l) one has to observe that the first derivatives
of all the auxiliary functions so far introduced can be expressed in
terms of the functions themselves. In fact, it is

(13) Dy = -3ug, Dp = ~2p0, Do = ¢ - 202

*
(14) De = -20¢e + pD(z)s
In our recursive procedure the equations (8) and (11) are pivotal for-
mulas, together with the formula obtained by applying Leibnitz rule to
the right-hand side of equation (10). Distinguishing the cases where
the order of differentiation is odd or even, the latter formula is,

respectively,
vl
(2v+1) 12042 o (V1) 12
ase) B« sV DTa) + ] 2vi2 g (wtae)  (vHp)
20 vl E_1< MBS aD a]
vl
ass) p®s =5[] (zﬁ)n(‘)“?)w(\ﬁl—p)a].

p=1

We notice in passing that the functions u, o, 8, ¢ and ¢ can be ex-
plicitly expressed in terms of the initial conditions (5). The deriva-
tives of s of order greater than the second become instead implicitly
defined in terms of the same initial conditions by virtue of (15a) and
(15b).

*We notice the analogy with the two body problem formulation[zl. In this

particular case there is only one function u and the auxiliary function s
satisfies the differential equation
D(z)s = = Us
Thus, equation (14) reduces to
De = - 0(2¢ + u)

and the whole procedure is greatly simplified.
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The method we have described can be considered completed if we
succeed in giving explicit expressions for Pv and Qv for any
desired value of v.

To this end we consider the following operator

(16) @ =D - 5¢

Then, a simple algebraic manipulation provides

7) Pep = 0P, + A
Quyq = ~30Q, + B,
where
(18) A = 6Qv . D(z)s
v o 2
Se
8Q 8Q
v 2 v
Bv e (e=20")~ ZUTE

Thus, starting from

1
Po =0, QO -—-5

any expression can be generated, by hand for lower indexed, by a
computer for higher indexed functions Pv and Qv' A program written
in the PL/I FORMAC language has generated these functions, conse-
quently the derivatives of u, up to orders far exceeding any practical
need. We 1ist in the table appended below the first six of these
functions. For v > 6, the expressions become very lengthy, and this

is the only reason which prevents their presentation in this paper.

The problem of finding the formal solution (6) of the equations of
type (1) can thus be considered solved.

228



THE FORMAL SOLUTION OF THE n-BODY PROBLEM

TABLE OF THE FUNCTIONS l—!Pv AND

e

<

%Q:; = % g (-3e+702)

-2a0®s 109, = - 22+ B 2 (2e-30)
- 2_15‘_ NN %Qs = 2o (5¢? - 300% + 330"
@,
o p (e-76%) 0 Z—!QG - %3 - 5 o® (se? - 1650%
@y -3 0Ps)? + 1430%)
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ABSTRACT

The long period behavior of a lunar orbiter is considered.
Of special interest are the effects due to the inclination of the
apparent Earth's orbit about the Moon and those effects described by
the laws of Cassini on the equations of motion. The first part of
the paper is restricted to low orbits where the lunar gravity field
dominates the terrestrial perturbation and to higher orbits of low
inclinations where the argument of pericenter circulates through an
angle of 360 degrees. The last part of the paper deals with near
polar orbits where the indirect solar perturbation as described by
the laws of Cassini is most important. Long-term stable positions

for the orbit plane are found.

* Doctoral Candidate and Research Assistant, Department of
Aeronautics and Astronautics, Stanford University, Stanford,
California (January 1969)
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NOMENCLATURE

a semi-major axis

e eccentricity

ep eccentricity of apparent Earth's orbit about
the Moon

F the negative of the Hamiltonian

FO,FI,Fz,F3 components of F

g argument of perigee

G ‘/Wez), canonically conjugate to g

h angular momentum vector of satellite

h position of the ascending node

H m—_ez)cos i, canonically conjugate to h

X Hamiltonian

Ky component of the Hamiltonian

i inclination

Ig inclination of the Earth's orbit to the
lunar equator = 6 degrees 44 min

.120,‘122,J3,J‘1 lunar gravity coefficients )
mean anomaly

L ‘/ﬁ, canonically conjugate to £

L4 Lagrangian

P a(l-ez)

51 momentum canonically conjugate to coordinate,
¥, in inertial space

15'1. momentum canonically conjugate to coordinate,
T, in the rotating frame of reference

I coordinate in inertial space

Ty perigee heigth = a(l-e)

r coordinate in the rotating frame of reference

R, lunar radius
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So,Sl,Sz
v(r)

generating function

components of S

arbitrary potential function

Earth coordinate

momentum canonically conjugate to GE
gravitational constant of the Moon
argument of pericenter = g

position of the ascending node = h
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I. INTRODUCTION

Some attention in recent years has been focused on the
problem of determining the motion of a lunar satellite. The
problem is complicated by the peculiar nature of the Moon's gravity

1
12,3 on the solution of

field., Early attempts by several authors
this problem were made by assuming the Moon to be in nearly hydro-

static equilibrium, Thus only the J and J22 gravity coefficients

20
were carried in the equations of motion. The higher harmonics J3,
J4, etc., were either ignored or assumed to be of order J:O.

Independent determinations of the gravity coefficients by both the
4
U.S. and the U.S.S.R.5 invalidate this assumption. It appears

from the early data that the oblateness coefficient, has a

-4 J20’
value of approximately -2,0Xx10 ~, However preliminary data from
Lunar Orbiters I through V still gives no conclusive evidence on
the absolute values for the higher gravity coefficients. It
appears at this time that these are all at most of order 10—5.

The lunar orbiter problem is further complicated by the
large perturbation caused by the Earth. For an orbiter of moderate
height, say 800 to 2000 km above the surface, the terrestrial per-
turbation is roughly equal to the oblateness effect of the Moon's
gravity field.

Of primary interest will be the long period effects, i.e.,
those fluctuations in the orbital elements having periods of
several months or longer. Short period variations, all of which
have much smaller amplitudes, will be averaged out. For a discussion
of these latter effects the reader is referred to papers by
Giacaglia2 and Osterwintera. The lunar grévity coefficients, J20,
J22,J3,J4 will be retained in the equations of motion. Cassini's
laws on the figure of the Moon will be considered in their classical
form, i.e.,, the smaller effects of the physical librations will

be ignored.
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The relative effect of the eccentricity of the terrestrial path

on the short period variations is of order e_ (=0.055), However

E
its effect on the long period behavior is of order eE2 (=0.0552)
and thus will be neglected. Such is also the case with terms in-

volving eEsin I The small effects of the solar radiation pres-

B
sure along with the direct solar gravity effect will not be

considered.

II1. CHOICE OF REFERENCE FRAME

As the behavior of close lunar orbiters is of primary
interest, a reference frame coincident with the lunar equator is
most convenient. This is especially so if the higher harmonics
of the Moon's gravity field are considered. However, as a con-
sequence of Cassini's laws, the plane of the lunar equator is not
fixed in space, Cassini's laws state that the plane of the lunar
equator, the ecliptic, and the plane of the Moon's orbit all
coincide in a common line (ignoring physical librations). This
line is the node of the lunar orbit as referenced to the ecliptic.
It is convenient to choose this line (the ascending node) as the
x-axis of the reference frame, The lunar axis of rotation is the
z-axis. Thus full advantage is taken of the geometry of the
system. This is described in Fig. (1). The system rotates in
retrograde manner with a period of about 18.5 years.

If one is to work in the rotating system just described,
the equations of motion, derived for a satellite moving in an
inertial frame, must be modified. It is suggested that this
modification take the form of an an additional perturbing term in
the Hamiltonian. The system of reference is rotating with

angular velocity components

w = 0.0 rad/sec

x -10

wy = 3.0X10 rad/sec (1)
w, = -1.07x10-8 rad/sec
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In an inertial frame of reference the Lagrangian is

In the rotating frame

The Hamiltonian is

Expressing X in terms
K =

where h is the angular

are

where G,H,h are the usual Delaunay variables.

/2 - Virp)

. L2
r wxr.) /2 - V(rr)

~
ey
+

O/l(l/
jekdia ]
vL

-8

T
.
Hey

of (p_,F ) one obtains
r’'r

fnt

3 PP+ V(rr) - weh

N

momentum of the satellite whose components

G sin i sin h
-G sin i cos h

Gcosi=H

term to be added to the Hamiltonian is

K. =

=
I

-:-h=-wh -wh
yy z z
+w G sin i cosh -~ WH
y z
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111, THE DISTURBING FUNCTION

The computation of the disturbing function due to the
perturbing effects of the Earth and Moon is straightfoward but
lengthy and thus will not be reproduced here. Employing a
result due to Brouwer7 and Kozai , the Hamiltonian in mixed

Keplerian and Delaunay variables is

2
- K = F=+§?—nE® —wszinicosh + WH

4 2
R J20(1-3coszi) + 6J,

(}3 22

IT:

sinzi cos 2(h-6g)

o)
(Al

o

3
Rm

G5

|1:

Jse sin i (1-5coszi)sin g

[
(2]

6

|eo
I'!:

4
4
R',;‘ J4(3-30coszi +35cos i)(2+3e2)
G

=
[
-4
w

4
-10 ezcos 2g(1-8coszi +7cos 1)

n 232 2 2 2
+ —EE (243e7){3cos 1-1 +3sin"1 cos 2(h-8%)
1

2(1+cos i)zcos 2 (g+h-Bg) + sinzi cos 2g

+ 15e2

1 ]
+ E(l—cos i) cos 2(g—h+6E)}

+ sin Iy {(6+9e2)sin 2i cos h -cos(h-20g)
-30ezsin i cos i cos h cos 2g
~sin h sin 2g +sin(h-2g)sin 2g

-cos i cos(h-Zé‘E)cos Zg}

.2
+ sinZIE {(6+9e )(sinzi —sinzh —coszh coszi)

(sinzh +c052h coszi +sinzi)cos 26E
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+30e2{cos i sin h cos h cos ZeE ~ cos i sin h cos h }sin 2g
-lSez{?inzh + sin®i - cos2h cos?i
+(cos?h cos?i - sin?h - sini)cos 26E}cos 2g }

(9)

The short period terms containing ﬂ, the mean anomaly, have been
averaged out. @ 1is canonically conjugate to eE’ the Earth coordinate,
and F is the negative of the Hamiltonian. This convention will be

used throughout.

It is desireable to write the Hamiltonian in the form
F=Fg+Fy +Fy + ...

where Fg is of order unity. F1 is of order 10-2, Fy is of order 104
and so on. To determine the order of each term in Eq.(9), Fig.(2)

is found useful. The terms u2/2L2 and nﬂ@ are seen to belong to Fy
and F; respectively. Terms assigned to F, are w,H and the contri-
bution associated with Jgg and J22. The Earth perturbation and

those effects due to Jg and J4 belong to F3. The disturbing function

is thus of the form

F(L,G,H®,g,h,0p) = Fo(L) + F{®) + F2(L,G,H,g,h,05)

+ F5(L,G,H,g,h,0p) + ...

At this point one wishes to eliminate all terms in F
containing Sg- This is accomplished by means of a stationary

generating function
S(L',G',H'®"',g,h,0p) = L'/ + G'g + H'h + B'6g (10)
+5,(L',G" ,H",g,h,0p) + S,(L',G'",H",g,h,05) + ...

such that the new Hamiltonian F*(L',G',H',®',g',h') does not contain

Og-. The new coordinates are related to the old by the relations
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_ 9S8 _ ., . _ 38 _ as 382
L= by i L £ = SO S L+ SZ% + 3L + eee

with similar relations for the other variables. From the
relation

F*(L',G6',H',0',g",h',6}) = F(L,6,H,0,4,8,h,0g)
the following equations are derived for S; and Sp.
F;(L',G’,H',g,h,—) = FZ(L' ,G' ,H',g,h,eE) - n 251
Ed6g

*
s, 3F205 glzéé_s_l_F3+a_r~za_sl,,g_f{z§%1_n

oF: 08z
' 3*3g06 *onoH T 56

3G'dg ' ES

choosing %El and %§2 to cancel the periodic parts of Egs. (12)
(5] Or

and (13) respectively, the new Hamiltonian is

2 SFo S
* W * oFo 98
F* = 52 - ng@' + Fp(L',6',H',g",h') + S ﬁl

+y?-5f; 981

*
Y Sn + F3(L',G',H',g",h")

As F* does not contain Bé, ®' is constant and will be dropped
in the following discussion.

In order to use the von Zeipel method to determine
the long period behavior of the orbital elements, F must be of
the form

F*

2
* *
= b + FL',6',H') + F3(L',G"H',g",h")
where F; is dominated by F;. This can be done if the orbits
under consideration are restricted. The lower orbits, where
Jéo is the dominant perturbation, automatically fall into

this category. Also included are the higher orbits provided

the inclination remains low,
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F4 in Eq, (15) is in mixed variables

Fj = L u'ef Jg0(1-3cos?i) — (2+3e2)(1—3cos i)
4 Lr3ge3
6, 4
b+ wH - = BB 53 30c0s214+35c0s%i] (2436%)
z 128 3,7 4
ng 2’2 2 2,3
5 2 2._
16— sin‘Ig [ (2+3e%)5(3cos®i-1)] (16)

The coupling terms in Eq. (14) have been dropped because of their
relatively small size, All of the terms independent of g and

. * : . * *
h in F3 are included in Fp. F3 is

* 3 5, 3

_ .3 "o s ~ 2. . N
F3 = -3 3Gv5 Jge'sin i (1-5cos“i)sin g
6 4
+ 30 i BRm J4[1-800521+7cos4i]ezcos 2g’
128 | 3.7

15 2,2 ,2.. 2.

= T - ] ] )
+ 16 npa'‘e sin“i'cos 2g' myG sin 1 cos h
nEZavZ 2
: 1] ) it L]
+ T |sin ig {(6+9e )sin 2i'cos h

-30e'2sin i’ {cos i' cos h' cos 2g'-
sin h' sin Zg']}

sinzlE {(3+§e'2)sinzi'cos 2h'

-15e'2cos i’ sin 2h' sin 2g'

+ %26'2(1+coszi')cos 2h' cos 2g'

4
- Ege’251n21'cos 2g'}} 17)
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It should be pointed out that for the lower orbits the
various angles appearing in Eq. (17) i.e., g', h’, h'ig', h'izg',
are all driven by the dominant F; term. One must beware however
of the various instances where any of the angular rates become
small. This occurs near the eleven (slightly altitude dependent)
critical inclinations® at i' = 46,6, 56.1, 63.4, 69.0, 73.2, 90.0,
106.8,'111.0, 116.6, 123,9, and 133.6 degrees, When the inclina-
tion is near one of these critical values, the resulting behavior
of the coordinates can exhibit very long period variations and
the von Zeipel method, now to be followed, fails. A method
valid in these special situations will be outlined in a later
section, For a high orbiter having a moderate inclination
(above 40 deg.) F; in Eq. (16) will contain some g’ and h’

dependent terms that are now included in F In this case the

*
3
von Zeipel procedure fails, This situation is discussed by

.1 9
Kozai  and Vagners .

IV. THE LONG PERIOD TERMS

As before one looks for a transformation from variables
(L',G',H',g',h') to new variables (L",G",H",g",h") such that the
*
new Hamiltonian F*' is a function of (L",G",H") only. Consider

the stationary generating function
*
S = L"g' + ¢"g' + H'h' + s;‘(L",G",H",g",h") + e (18)

The relation between the coordinates are

*

L
G'=G"+£}+... g =g' +2—(s;‘1.+... 19)

with similar relations hetween the other variables.
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*
Choose Sl to be

where

j2]
n

*
_15 2,2 .2 . 2, 3.2 l>)
16PE @ € sini (1L Esin IE) 2a

—

of the form

3 1] ' i 1 1]
alszn 2g' + a2cos g' + agsin h' + a4sin 2h

+ a.sin(h'+2g') + assin(h'—zg')

5
+ assin(Zh'+2g') + a7sin(2h'-2g') (21)

128 L"3 n? 4

6_4
[.'3_0 B Ry {1—800521"+7cos4i" 2
G

o

F

2 53 *
3 %% ", 1) z.n BF
3 L"3G"5 J3 e"sin 1" (1-5cos” i )] e

-

i ng2a"? 2 3Fa
+ w G"sin i" - ZE 2 gin 15(6+9¢"“)sin 2i" 3
z 16 E

L

2 _n2 *
ng a . 2 w2, . 2. JF
—&5— sin IE(6+9e )sin"i

16

2
[— L, 2a" ¢"%sin Ip sin i" (1-cos i")jI

- - *
15 2.2 ,2 . . . .w oy /To9F oF
- n, a’ e sin ig sin i" (l+cos i )J ng;& + 5

16 E

64 'E

2
[— L, za"ze"zsinzlE(hcos i")} [Zag. + ZaF ]

— E 2 w2 42 . 2 12 JF: - JF.
s = [+ 52 Mg @ € sin IE(l-cos i )] [23—(;& 28_11%
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The Hamiltonian F** is now independent of g" and h" and is

2 2
2
P, 6t e = B o IEBR 5 1ogc0sTi") 4 w A"
21:"2 4 L"3G"3 z
6 4
3
- 8 ﬁé&_, J4(2+3e"2) 3-30cos?1" +35cos 11"
L" G"

2 w2
+E2 (2+3¢"%) (3cos2i"-1) (1- %sinzlE) (22)

As S1 and S: are known, Eqs. (11) and (19) are utilized
to determine the behavior of the elememts (L,G,H,f,g,h). The
coefficients of the trigonometric terms in Eq. (21) contain six
critical divisors. These correspond to the eleven (slightly
altitude dependent) critical inclinations mentioned previously.

It appears from an inspection of Egq. (21) that near a critical i"
the amplitude of the coordinate variations can become nearly
infinite, Actually this is not the case as will be shown in the
following example.

Suppose the inclination is near 90 degrees, A near polar
orbit is chosen as the very long period behavior resulting from the
laws of Cassini is best demonstrated. The slowly varying Hamiltonian

is (i.e,, the relatively fast variable, g', has been averaged out)

2 1 4 2 2
o B 2+ 7 H g J20(1—3cos i") + w H" - wysin i"cos h"
21" et z
2 2
2
+ nElZ (2+3e") (3coszi"-1) + 3sin Igsin 2i"cos h"
+ g sinzlE sinzi"cos 2H] (23)
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where all of the elements are slowly varying. The secular terms
involving J, and sin21E have been omitted in Eq. (23) due to their
small size, Since the Hamiltonian does not depend on £ or g", L"
and G" are constant and the equations of motion have been reduced

to that of one degree of freedom, They are expressed as

. *ok 2 2 2 '

8\n /1_ 52

&)

*k
1t : lId_i" — - i1 — aF — 1] . hil s "
-G"sin i ac = H' = + S = wyG"sin i"sin h
- i% nEza"2(2+3€'2)[sin Igsin 2i"sin h" + sinZIEsinzi"sin 2n"
(25)
Note that @ = — 1.07X10"° and J.. = ~ 2.0x1o"4. The phase plane
z 20

(H",h") contours of constant F** in Eq. (23) are shown in Fig. (3). For
very low orbits (Fig. 3a) the stable equilibrium points occur at
h" = 0 degrees and i" = cos-l(g» = 88 degrees. Recall that the
nodal position, h", is measured from the point where the plane of
the lunar equator, the ecliptic, and the terrestrial path meet in
a common line. It appears that the orbital plane of a low orbiter
can become trapped in this same configuration, Or it can exhibit
very slow stable oscillations about this position, the period of
which is about twenty years for a low satellite.

The interplay between the inclination and nodal position
demonstrates remarkably different behavior for higher orbiters,
For a semi-major axis of 1.5 R and an eccentricity of 0.0, the
behavior of (H",h") or equivalently (i",d') is shown in Fig. (3b).
In this case the inclination can be trapped near 83 degrees but
h" appears to be stable between O and 90 degrees. The behavior

for a still higher orbiter is shown in Fig. (3c).
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For this case the stable equilibrium solutions occur at ' slightly
over 90 degrees (and slightly less than 270 degrees) and i" = 74
degrees. This is near the 73.4 degree critical inclination (when
B"- ¢" = 0) mentioned previously, However in this particular case
a closer examinination shows that this critical i" occurs at about
66 degrees, This particular orbit may eventually impact the sur-

face. (cf. Kozai)

V. CONCLUSIONS

The long period behavior of a lunar orbiter is
determined for a certain class of orbits. The method of succes~
sive approximations is employed in treating the circulating
orbits. In this case the angles g", h", g"+h", etc., were
assumed to move at nearly uniform rates. The librating orbits
(when one of the angles does not move through an angle of 360
degrees) are treated by the use of a phase plane analysis.
Treated, as an example of the latter, are near polar orbits in
which the indirect effect of the Sun (described by the laws of
Cassini) is important, Stable altitude dependent positions of

the orbital plane are found.
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LECTURES ON NONLINEAR RESONANCE
W. T. KYNER

In the early 1940's, interest in the theory of nonlinear
differential equations developed rapidly in the United States.
Friedrichs, Hurewitz, Levinson, Stoker at Brown, Lefschetz, Bellman
at Princeton, and Minorsky at the David Taylor Model Basin were among
those most responsible. In particular, Lefschetz recognized the
importance of the Soviet contributions during the preceding decade
and helped make much of this work accessible to the American technical
public. In 1942, he prepared a translation of excerpts from mono-
graphs of Krylov and Bogoljubov [5 ] whose averaging technigues are
closely related to the general perturbation theories of celestial
mechanics. It is interesting to note, however, that just when Krylov
and Bogoljubov were starting their research in nonlinear mechanics,
an elderly American, E. W. Brown, Gibbs professor of mathematics at
Yale University, explained and essentially justified the important
concept of resonance as a basically nonlinear phenomenon. His lectures,
"Elements of the Theory of Resonance I1lustrated by the Motion of a
Pendulum,” were given at the Rice Institute in April 1931 and were
later published as a Rice Institute pamphlet [2 1. They are particu-
larly relevant to this year's Yale Summer Institute because of the
jmportance of resonance phenomena in geodetic satellite theory.

In my lectures on resonance I shall follow Brown's exposition
of the basic concepts, but I shall use the Krylov-Bogoljubov method of
averaging in the mathematical analysis. The main application of this

theory will be to satellite problems.
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1. Pendulum problems

As we all know, a stretched wire has certain modes of vibration
which seem independent of the strength of the energy source. But we
tend to forget that the "natural frequencies" of these modes are a
mathematical fiction since they are only present "when the vibrations
have infinitely small amplitudes, which amounts to saying that the wire
is not vibrating at all. More properly, a natural frequency should be
defined as the lower limit of the frequency of that particular mode of
vibration. It is necessary to insist on this change of frequency with
change of amplitude because the existence of the phenomena of resonance
depends on the existence of this change" (p. 2 of [ 5]). Furthermore,
a detailed analysis of the "locking in" effect which is observed when
two piano wires are tuned to the same frequency depends in an essential
way on the change of frequency with amplitude. This is discussed in
detail by Brown and more concisely by Cesari (p. 151 of [3 ]). I shall
omit such a discussion here and go directly to the pendulum problems
which are physically less interesting, but more relevant to satellite
theory.

We first consider an ideal pendulum of length b with an
oscillating support (see figure 1).

Let Y be the horizontal distance of the support point S
from a fixed point 0 and x the angle which the pendulum makes with
the vertical. The support point S is constrained to move in the

horizontal direction. The equation of motion of the pendulum is

2 2
(1.1) L cos x + b ex g sin x,

dt2 dt?
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FIG. 1

FIG. 2
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(we sum the forces along the line perpendicular to the pendulum).

We now assume that S oscillates with a motion given by

Y(t) where
d2y _ -
— = -¢gq flat), e small, f(z + 2x) = f(z), all z.
dt2
Then
(1.2) X4 2 sinx = ¢ f(y) 2 = g/b - ot
. gz-wsmx-e Y) COS X, w? = g/b, Y = at.

The second model problem is that of two pendulums, each of
mass m, but with different lengths, attached to a bar of mass M
which is constrained to move in the horizontal direction (see figure 2).

We assume that the total horizontal momentum is zero, i.e.,

(1.3) g—t MY + m(Y + b sin x) + m(Y + a sin y)] = 0.

The equations of motion are

2 2
ELl-cos X +b £x o g sin x,
dt? dt?

(1.4)
2 2
ucosy+ad—-y- = - gsiny.

dt? dt?

Using (1.3) to eliminate d2Y/dt?, we obtain
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2 2
EX 4 w2 sin x scosxd—(sinx+%siny),
dt? dt?

(1.5)

2 2
LAY sin y ecosyd—(siny+%sinx),
dt? dt?

where o2 = g/b, o = g/a, ¢ =m(M+ 2m)”'. We assume that ¢ is

small. Equations (1.5) are awkward to work with since the second
derivatives of x and y appear in both equations. We therefore

rewrite the equations as

d?x 2 i 2 2,y7°!}
==+ % sin x = - e cos x [1 - & (cos?x + cos?y)]
dt?
2 : . . dx, 2
{w? (cos x sin x + cos y sin y) + sin x ('ch)
2
+2siny (§01,
(1.6)
2 . -
d—{-+ a2 siny = - e cos y [1 - e (cos®x + cos?y)] !
dt

2 : ; b . dxy 2
{a? (cos x sin x + cos y sin y) + 3 Sin x (H'E)

2

+s1'ny(%‘\tl-)}.

Each equation of (1.6) can be interpreted as a perturbed
pendulum equation. We therefore can use the same mathematical pro-
cedures on equations (1.2) and (1.6). The first, and rather difficult,

step is to introduce new coordinates so that the differential equations
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will be in the normal form for the method of averaging. In order to
motivate the coordinate change and to display the simplest features of
resonance, we shall now study the linear differential equation obtained
from (1.2) by making the small angle approximation, i.e., sin x = x,

cos x £ 1. We have

d2X 2 - =
(1.7 =+ w? x = ¢ f(y), Yy = at.
dt?

The solution to (1.7) can be written
c t
(1.8) «x(t) = r, cos a(t) + a»f sin w(t - u) f(ou) du,
0

where 8(t) =w t + eo, " and B, are constants determined by
initial conditions.

If o, the frequency of the forcing function, is an integral
multiple of w, the frequency of the linearized pendulum equation,

then unbounded solutions of (1.7) are possible. In other words, if
(1.9) ak = w, k an integer,

then the corndition of linear resonance has been satisfied. It is
obviously the same for all forcing functions of period 2n/a, but

the existence of unbounded solutions depends on the presence of

sin wt or cos wt in the Fourier series expansion of a particular
forcing function. The concept of linear resonance is of limited
physical significance since the small angle approximation is destroyed.

Before leaving the linear approximation, let us consider the
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homogeneous (e = 0) problem with the aid of the corresponding phase
and potential planes (see figure 3). In the phase plane we plot the

level curves of the energy integral,

E(x,X) = ]7)'(2 +]§w2 x2 = h, a constant,

and in the potential plane, the two curves

2 2

X,

c=h, c-%w

Each level curve is characterized by its energy and therefore by its
amplitude. We now introduce r, the amplitude (note that h = w?r?/2),

and 6, a normalized angle, as dependent variables, i.e., we set
(1.10) X=rcos 8, Xx=-ursinaes, o=wt+ao,.

The inhomogeneous equation (1.7) is equivalent to

f(y) sin 8,

|
I
€™

aan g = w+w%f(xp) cos 8,

Equations (1.11) are in the normal form for the method of averaging.
Note that if ¢ is nonzero, they are nonlinear.
In order to reduce the nonlinear pendulum equation (1.2) to

normal form, we seek a coordinate transformation (compare with (1.10))
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FIG. 3
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(1.12) x = F(r,8), % =G(r,8),

with F and G having period 27 1in @, such that the unperturbed

(e = 0) equations have the form

dr

@& - 0

(113) 8 - (),

&

n
3

It will be shown later that z(r) = w2(1 - r2/16 + ...).

The construction of the transformation (1.12) is somewhat
complicated, but it can be motivated with the aid of the phase and
potential planes. We again plot {see figure 4) the level curves of the
energy integral,

E(x,X) = %—iz + w?(1 - cos x) = h, a constant,

in the phase plane, and the curves
c=h, c = w?(1 - cos Xx),

in the potential plane.

We see that h less than 2w? implies that the motion is
periodic and that the level curves are characterized by the amplitude.
The transformation (1.12) is therefore possible. Since we need to

study several nonlinear differential equations in the satellite problems,
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N
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we shall give a general construction which will then be applied to
the pendulum problems. It is similar to the one used by Brown and
more recently by Morgunov [7 ].

Consider

030 Breqpg -0 a0 e, a0 >0

If r 1is positive and not too large, then

X

(1.15) x2 +0Q(x) = Q(r), where Q(x) =/ q(x') dx',
]

~Nj—

is the equation of a closed integral curve in the phase plane. It is

generated by a periodic solution of (1.14).

From
(1.16) & = (2[a(r) - QD? = A(rax),
we have
X -1
(1.17) 8=12z(r) [ A (r,x') dx' = B(r,x),

where the frequency z{(r) 1is given by
-1 LI
(1.18) 2mz (r) =4 { A (r,x'") dx' .
0

Equations (1.16-1.18) implicitly define the required transformation

(1.712). Clearly,
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The perturbed equation,

(1.20) j—zx-+q(x) = e flat),

t2

will be transformed into a system of first order equations,

%% = z(r) + e 0(r,8,y),
(1.21) % = ¢ R(r,0,9),

dy _

X -

To do this we write

(1.22)
de _ 3B dr, 3B dx
dt ar dt ~ 9x dt °
But
g—,ﬁ = A(r,x),
2
X =L g(x) + e fat),
dt?
and
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g_a - q(r) A-l(r’x), g_ﬁ = -q(X) A-I(rax)s
% = 2(r) A" (r,x).

Hence,

D= 2(r) + e 1) Arx) 27N Brx),

(1.23)  g& = e () Alr,x) a7'(r),

dv
dt &

where 0 = B(r,x) determines x as a function of 6 and r.
Equation (1.23) can be simplified if we have an explicit

formula for x = F(r,8), the inverse to & = B(r,x). For from

= Alrx) = z(r) 3(r.6),

A(r,x) %r,X) = - Alr,x) %(r,X) = - z(r) -g—'F.(r,e),
we obtain

-gT'” = e f(y) z(r) q7'(r) %(r.e),

(28 8 o o2 [ - e ) a7 0 e,
N
i
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Note that F{(r,8) and z(r) can frequently be represented by an
infinite series, e.g., by using Lindstedt's method (p. 116 of Cesari
[3D).

We have finally transformed our differential equations into

the normal form for the method of averaging, our next topic.

2. The method of averaging.
For convenience, new notation is employed in this section.

We consider a system of ordinary differential equations,

dx

T - e Xay)s o x= (xsexy)s

(2.1)

dt z(x) + € Y(X,_Y), y = (yl""!yN)s

with initial conditions x(0) = a, y(0) = b. The vector valued
functions, X(x,y), Y(x,y), are assumed to be smooth and to have
period 2m in each Yn The X, are called slow variables, the Yn

fast variables, since if € = 0,

X = a

m me 1<m<M,

(2.2)

e
>
"
N
—
[
fad
-+
+
o
)
-
—
A
>
in
=
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Qur goal is to construct a transformation,

bad
]

u+ e P(u,v),

y=v+eQ(uv),

with P and Q having period 2m in each Vs SO that the equations
(2.1) become

g‘:‘ = € U(U) + g2 wl(uavss):
(2.4)
Q= 2(u) + e V(W) + e W (u,v50).

In other words, the fast variables have been eliminated (to first
order) from the differential equations. As we shall now show, this

elimination is an averaging procedure; in fact, we can take

2m 2

U(u) = (Zn)-N [ " X(u,y) dy ...dyys
0 0
(2.5)
N 2r 2m
V(u) = ()T [ e f 0 Y(uay) dy Leedyy
o 0

Approximate solutions to (2.1) can be constructed by solving the

first order averaged equations,
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du

—d—t- = € U(u)s U(O) = al’
(2.6) G5 = z(w +ev(w, w0 = b,

a = a' +eP(a',b'), b = b'+eQa',b'),

and substituting the solution into (2.3).

If we differentiate (2.3), then from (2.1) and (2.4), we have
eX(u+eP,v+eQ = (I, +eP)(ecU+ew)
? M Ju 1
+e = (z(u) +e v+ eZNZ),

2lu+eP)+eY(u+teP,v+reQ)-= (IN+eg%)(Z(U)
+eV+ ezwz)
3 2
+€au(eU+€N1)-
Expanding in powers of ¢, we have

e X(u,v) = e[U(u,v) + g_l\)/ (u,v) z(u)] + €2[**],
2(u) + e[3Z (u) P(u,v) + Y(u,v)] = 2(u) + e[V(w)

+ 3 (uv) 2(w] + e2[=],

where [**] denotes a smooth function of u, v, ¢ whose explicit

formula is not needed here. Clearly, we must require that
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X(u,v) - U(u) = %% (u,v) z(u),
(2.7)

2 (u) plu,v) + Yuw) - V() = Buw) 2(u) .

If the first equation is to have a periodic solution, the
left side must have zero mean. From this requirement, we have the
first equation of (2.5). If, in addition, we know that P(u,v) has
zero mean, then in order to solve for Q{u,v), we must have the
second equation of (2.5).

Let us briefly consider vector equations of the type

(2.8)  Fluv) = Buv) 2(u),

where the given function F(u,v) has period 2n in each Vo Since

we seek a periodic solution, we expand both S and F in a Fourier

series,
S = ZJ. SJ.(u) exp i[§,v], = (J",---,J'N),
(2.9) C T
F = zj FJ.(u) exp i[,v],
. where

N
Wavl = 1 dpv, -

Substituting (2.9) into (2.8) and equating the coefficients of

exp i[j,v], we obtain an infinite set of equations,
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-n
o

—
[

=
]

0,

Fi-(u) ild,z(uw)] Si(u) .

If for all u in the domain of interest, and for all integer

vectors j, we have the nonresonance condition,

(2.11)  [G.z(w] # o,

then we can solve for the Sj(u), and therefore for S(u,v). We

obtain a formal series,

(2.12)  S(u,v) = Zifg.- i[_i,z(u)]-l ﬁi(u) exp i[j,v] .
The denominators [i,z(u)] can become small as Jj becomes large,
thereby preventing the convergence of the series (2.12). We avoid
this difficult problem (the classical small divisors problem) by
assuming that F(u,v), and therefore, S(u,v) are trigonometric
polynomials. Note that to the particular solution of zero mean {2.12)

we can add an arbitrary solution of the homogeneous equation,

(213) 0 = Bluw 2w .

Returning to (2.4), we see that if the nonresonance condition
(2.11) is satisfied, and if U and V are chosen by (2.5), then the
transformation (2.3) can be constructed.

It is not always convenient to require that P(u,v) and
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Q(u,v) have zero mean. For example, if the system (2.1) is
Hamiltonian, then the solution of the homogeneous equation (2.13)

can be selected so that the averaged equations (2.6) are Hamiltonian.
John Morrison [ 8 ] has developed a generalized method of
averaging in which the additive arbitrary functions play an essential
role. Much of this section is based on his work.

Before discussing the resonance problems (our main topic), we
shall investigate in what sense the solutions to (2.6) determine
approximate solution to the original equations (2.1). For simplicity,
we shall consider scalar equations, i.e., N=M-=1.

Let wu(t) and v(t) be solutions of the exact equations

(2.4), and u*(t), v*(t) be solutions of the approximate equations

(2.6) with
u(0) = ux(0) = a', v(0) = vx(0) = b'.
Let
(2.14) r = u- u*, s = v - vk,
x* = ur+ g Plur,v¥),  y* = vx o+ g Qur,v*).
Then
dr oo Qu(ur + ) - U]+ e
(2.15)
ﬂ—i = z{ur + 1) - z(u*) + e [V(ur + r) - V(uH)] + €W .
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We assume that in the domain of interest the given functions and
their derivatives can be bounded by the same constant C. Then from

(2.15), we obtain the inequality

t
Ir(t)} <e [ Clr(t')| dt' + €% Ct,
o]
(2.16)

Is{t)]

A

t
(1 +¢€) [ clr(t')] dt' + 2 Ct .
0

By the generalized Gronwall inequality (p. 11 of Sanone and

Conti [9]), we have
Ir(t)] < e [exp (e Ct) - 1] < €2 Ct exp (e Ct),

(2.17)
[s(t)]

| A

(1 + e)exp (e Ct) = 13 +e2Ct -¢e C(1 +¢) t2/2

| A

e Ct [2exp (e Ct) +¢ - t].
Therefore from (2.3) and (2.14), we have the error estimates,

[x(t) - x*(t)] < (1 +eC) |r(t)] + e C|s(t)] ,
(2.18)

[y(t) - y*(t)] < (V +eC) |s(t)] +eC|r(t)] .

0nmiMww105tiTh,T fixed, the error in the

slow variable satisfies the inequality,

(2.19) [x(t) - x*(t)] < e2t C*,
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while the error in the fast variable satisfies the weaker inequality,
(2.20)  |y(t) - y*(t)] <etC*,

where the constant C* depends on the bounds C and T.

In general, the estimates (2.19) and (2.20) are the best
possible. Approximations which are meaningful on an infinite time
interval can be constructed only under the most exceptional circum-
stances.

We now have developed the mathematical machinery for studying

nonlinear resonance.

DEFINITION. If there exists an Xo and k # 0 such that

(2.21)  [k.z(x)] = 0,

then the condition for resonance motion has been satisfied. The
degree of the resonance is the number of 1inearly independent integer
vectors k which satisfy (2.21).

A resonant problem can be reduced to a nonresonant problem by
suitably reducing the number of fast variables. Let L denote the

module of integer vectors k such that [&,z(xo)] =0, and let
N . T<v<N

be a basis of L. We can construct N - v Tinearly independent
vectors

perpendicular to L. Hence
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(2.22) 8 = det |k ,...5ky| # 0.
Set
(2.23)  q = A7 [yl or g = Ky,
where the N x N matrix K has as its rows  the vectors Kk /A .
By construction,
(2.24)  [§.Ke(x )] = 0

implies that the last N - v components of j are zero.
The next step is similar to that used in boundary layer

studies. We set
(2.25) X = xg % el/? P .

By virtue of (2.23) and (2.25), the original system of differential

equations (2.1) is equivalent to

(2.26)
9 o gyx + e’ p) + € KY(x_ + El/Zp.K-lq) .
dt ° °
Hence
dp _ 1/2 -1 1/2
i - € X(xo,K q) +¢€X,(p.g,e’") ,
(2.27)

dq _ 1/2
7 Kz(xy) + ¢ D(x,) p + ¢ Y, (p,a,e) ,
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where D(Xo) = Kaz(xo)/ax , etc.

Since the components of K ' are integers, the system (2.27)
has period 2r in each a,- Furthermore Qps--059, as well as
Pys..-Py are slow variables, while CNFEFPRRRL Y are fast variables.

Two features of the transformation of (2.1) to (2.27) should
be emphasized. The equations (2.27) are valid in a neighborhood of

Xy3 quoting from Brown (p. 8 of [2]) "resonance is not a single

special case of motion but is a group of cases extending over a finite

range of values of the constants." The second feature is a drop in
the order of the approximation; el/z rather than ¢ 1is the
perturbation parameter.

We make one last change in notation. Let

wo= 81/2 s D(x,) = (£>,

A= (@aeaa) s X(xO,K;1)= R(A, 3), etc.
(2.28)

¢ = (q\)+]""SqN) k]

w = ([‘—(\)'*']’Z(XO)]’.'.’[KN’Z(XO)]) ]
Then

g - M ROGe) +ut R (Padstan) s

(2.29) & uAp + 2 Al(p,x,qa,u) .

= + 2 .
0t wtpdp+y QI(P,A,¢,u)
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Clearly, the first order (in u) averaged equations are (we

forego another change of notation)

2r 2 .
dp _ - -(N-y) [T T
F oM Ros RN = (2m) éfg ROue) dp ..dgy
(2300 B -y,

%% = wtudp.

Note that in both (2.29) and (2.30) A and ¢ are constant matrices.

Furthermore, we have the nonresonance condition [j,w] = 0 implies

i=o.
Let us consider the first two equations of (2.30).
dp
RatA)
T B Ry(2)
(2.31)
dx
a = uhp .

If RO(A) vanishes at X = Xo’ then p=0, X = Ao is an equilibrium

state of the system (2.31). The stability of the equilibrium state

can be studied with the aid of the linearized equations,

dp 3
T = xRl (- ),

(2.32)

FO-2) = unp.
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The phenomenon of libration occurs if the equilibrium state is
the center of a family of periodic solutions of (2.31). Just as with
the linearized pendulum equations (1.7), the condition of resonance
does not by itself insure that the motion has any special properties.
For example, if the frequency of the unperturbed problem does not change
with the amplitude, then A is zero, and libration is impossible. Hence
Brown's claim, "the existence of the phenomena of resonance depends on
the existence of this change."

Before returning to the pendulum examples, one final observation
should be made. The first order system (2.32) is equivalent to a second

order system,

(2.33) &%
dt?

= W ry(a) -

If there exists a scalar function Z(x) such that
ARy(X) = - grad Z(a) ,

then

(2.34) %‘[ %%, %EA] +u? Z(x) = const.

is an integral of (2.33).

3. Analysis of the pendulum problems
As our first example, let us take the linearized pendulum

equations (see (1.7) and (1.11)),
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f(y) sin 6 ,

E|m

q c -

(3.1) de w + i% f(y) cos & ,

Note that we must have r nonzero.

If
(3.2) w = ka, k an integer,

the condition for linear resonance is satisfied.

Following the procedure of the preceding section, we set

= U2

u = £ )

o= (8- ke)/(1 + K2,

(3.3)
¢ = (ke +)/(1+Kk?) ,
ro=or, + up, Yo > 0.
Then
8 = A tk¢,
v o= -kx+o,
and
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dp _ " N
T u)f(q>-k>\) sin (A + ko) »
dn _ u?f(d - kA) cos (XA + ko)
(3.4) r
w(rg + up)(1 + k)
do _ +u2k (¢ - kr) cos (A+kﬂ.
& wlrg +up)(1 + k)
The first order (in u) averaged equations are
2m
%% = -% 7]77'5 f(¢ - kx) sin (n + k¢) d¢ ,
dx
(3.5) @ 0,
-di =
dt o

For simplicity, let us take f(y) = cos ky. From
cos (k¢ - k2a) sin (A + k¢) = %—sin (1 +k?)

+%—s1‘n [2ke + (1 - k3)AT

we have that the equations for the slow variables p and X are

%% = -?%sin (1 + k3,

(3.6)
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Clearly, there are no periodic solutions of (3.6). It is important
to note that the (unstable) equilibrium states are not of physical

significance.

The second example is the nonlinear pendulum equations (see

(1.2) and (1.24)). In normal form, we have

i f(y) z(r) %% (r,8)[w? sin r]™",

B0 o=z -ez2n) fw) 9 (r0)[w? sin r17,

.dl -
at o

3

where

2(r) = w1 - T v o),
(3.8)

x = F(r,0) = rcos 8+ 0(r?) .

It is essential that dz/dr # 0.

We shall not derive (3.8) in detail, but only remark that if

we set
sin x/2 = sin v/2 sin ¢,

then (see (1.18))

2(r) = w[-:? /(1 - sin? w2 sin? g)"V/? d;}'1
o]}
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We can now easily derive the first equation of (3.8) by expanding the

integrand in powers on r.

Unfortunately, the transformation from x, X to r, 6 is
singular at r = 0. For simplicity, we want r small, but if the
equations (3.7) are to be meaningful, we must have r nonzero. We

therefore assume that

(3.9) 0<ef < r? < el

2

The exponents of the bounds on r® will be chosen shortly.

We now replace (3.7) by the simplified equations,

g{ = - Ef(y) sin 6+ 0(e r2) ,
2
(3.10) g% = w1 - J2) + £ f(y) cos 6 + 0(c r?) ,

[}
R

*
t
The difference, and it is essential, between (3.1) and (3.10) is

that the frequence of 6 depends on r.

The condition for nonlinear resonance is that

(3.11) w(l - r02/16) = ka , k an integer, r,#0.

Assuming (3.11), we make the substitution (3.3) and obtain
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g _ ; 2
T - o (¢ - kA) sin (A + k¢) + O(ur?) ,
(3.12) & pwr P w?uwp? . u? f(¢-kr) sin (A+ko) s o(u2r?)
X gA - - uir?),
dt 8(1+4k2)  16(1+k2) wlr +up) (142)
2 2 _ :

%% A S %§ rop - W o2 4 f(¢-kr) sin (a+k¢)

(1+k?) w(rg+up)

+ 0{p2r?) .

In the dr/dt equation we want the first term to be dominant
even though o is small, i.e., we want ury >> uz/ro. Therefore, we

require that
(313) 0<y'Yar < Y2 ocy<is2,

The upper bound permits us to drop the O(ur?) and 0(u?r?) terms

in (3.12). Clearly, from (3.13), we obtain (3.9)

We again set f(y) = cos ky. The first order averaged equa-

tions are
dp _ _ u o 2
F3 2, Sin (1 + k),
Hwr p
(3.14) P - - —,
8(1+k?)
%2 o - karop
t 8(1+k2)
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let £ = (1 +k%)x+m, 1 =uyut. Then the differential
equations for the slow variables X and p are equivalent to a

homogeneous pendulum equation,

(3.15) ii% +02sing =0, Q% = ro/8 .
Note that the independent variable is the "slow time," 1 = ut,
and that the frequency & depends on the amplitude ror

The example of the pendulum with oscillating support can be
discussed in more detail (see section III of Brown [ 21), but we have
displayed its most important properties. To summarize: because the
frequency is amplitude dependent, libration can occur at resonance.
The equations describing this libration are equivalent to the
homogeneous penduium equations, but are valid only over a finite time
interval (of the order of a'l/z).

The two pendulum problem gives similar results. Here we set

b
u

2
r,ocos 8, + O(r1 ),

N
—

-
~—

H

w(l - r12/16),

y =r, cos 62 + O(rzz), z{r) =01 - r22/16),
(3.16)

- 2
fo=-w (rl cos 6, + 1 cos ez),

2
f =~ +r .
o ('l Ccos 61 cos © )

Then equations (1.6) are approximated by
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d _ .

=" (r1 cos g +r, cos ez) sineg

d r =-ecaf{r cose +r_ cos e ) sinoe

dt 2 1 1 2 2 2 ?
(3.17)

4 ] ) w

qE o, =W (- r /16) + ", (r1 cos o +r,

d _ 2 £Q

T, - a - r, /16) + r, (r1 cos g, +r,

The condition for nonlinear resonance is
- 2 = - 2

(3.18) klm 1 L /16) k2a (1 "o /16}) .

We shall take k1 =

to the reader.

Then with
Y
u=
(3.19)
r =
1 1

we have (retaining t

alo.
ot
o
-
n

(3.20)

&

cos ez) €os 9, ,

Cos 9 ) cos 5 .
2 2

k2 = 1. The analysis of other resonances is left

2 21 =1
B} )\_2(91'62)’ (1)"2(91"'62)9
0 + P1 ) TZ = r20 + WP, »
he dominant terms)
- Br o sin 2049) + v, sin 26 + v, sin 2],
- %%{rzo sin 2(x+¢) + o sin 2¢ - "o sin 2] ,
A -
16 [urzopz wrlopl] ’
a(1 - r, 2/16) - & (wr, p +ar,p.) .
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The averaged equations are

d .

P %Q-rzo sin 2x ,

4 b M. sip 2

P72 "o ’
(3.21)

dx

at T% [urzopz - wrlopl] ’

%%—= a (1 - r202/16 - f% (wrlop1 + arzopz) .

Once again with ¢ = 2x + w, T = ut, we have the homogeneous

pendulum equation describing the resonance phenomena,

d_z_?;_ 2 o - 2 2 (N2 2
(3.22) pors +Q2sing =0, Q% = (a2 + w?) rlorzo/ls .

The Tibration around ¢ = 0 corresponds to an exact solution
of the original equations (1-6) in the special case of equal lengths,
i.e., o =w. For then, if x = -y, the two pendulums oscillate out
of phase with exactly the same frequency. The support is motionless.
If the lengths are almost equal, this "locking in" can be approximated
if the initial displacements are chosen so that the resonance
condition (3.18) is satisfied. The unstable equilibrium point, ¢ = m,
corresponds to initial conditions x 2y # 0. The support must then
oscillate (preservation of linear momentum)--the subsequent motion
of the pendulums is eratic. Finally, we note that the simplicity of

equations (3.15) and (3.22) is due to the small amplitude assumption.
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4. Motion of synchronous satellites.

In this section, we shall study a typical sateilite problem in
order to establish the accuracy and the time interval of validity of
the pendulum model which is derived by the method of averaging.
The problem is the determination of the effects of asymmetries in
the Earth's gravitational field on the motion of a synchronous
satellite, i.e., one whose mean motion is approximately equal
to the rotation rate of the Earth. Because of the near equality
of the two frequencies, the mean motion and the rotation rate,
we have an example of nonlinear resonance where the effects
of the longitude dependent asymmetries are amplified. This
resonance has been carefully studied by L. Blitzer [1], B. Morando
[6] and others. W. Kaula's textbook "Theory of Satellite Geodesy"
[4] contains a clear exposition of the phenomenon.

For simplicity, we shall ignore those terms in the potential
which have little effect on synchronous satellites and write the

potential as

-
v - Tr T VZO - VZZ’
J2
(4.1) V20 = ——r—3 Pz(smcp),
J22

V22 = +u r3 Pzz(snﬂp) cos 2(h - )\22),
where

W = the gravitational constant,

r = _the radial distance from the center of mass

measured in Earth radii,
® = the latitude,
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X = the longitude,
-3
JZ ~ 10
-6
JZZ ~ 10
P, (sing) = 2 (3 sin’g-1)
» ne = 5 sin~ ¢ ~ 1),
. - L2
P22 (sin ) = 3(1 - sin~ @)

Then, according to the standard theory, (Chapter 3 of [4 D if
the mean secular rate (short periodic effects are suppressed) of
)\A’ the astromical latitude, is close to zero then the secular

behavior of )\A is governed by the pendulum equation, i.e.,

4.2) hp = Ala,ei) sin2 (hy - k)
where
)\A = 0w +M+Q-06
8 = vyt + €. Greenwich sideral time,
Ala,e,i) = :—5 T,y %(1+cos )% [ -g &% +¥6ie4 o)

Here the variables (a, e,i,®,Q, M) are to be interpreted as averaged
or mean elements. It should be noted that the dominate asymmetry,
VZO’ does not influence the secular behavior of )\A. Furthermore,

if
(4.3) A, = 0 +Q+M-9 =0

and if JZ and JZZ are zero, then M-6= 0, i.e., we have near
equality of the mean motion of the satellite and the rotation rate

of the Earth. As usual
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a = the semi-major axis,

e = the eccentricity,

i = the inclination,

@ = the argument of perigee,

Q = the longitude of the ascending node,
M = the mean anomaly.

We shall start with the equations of motion and derive averaged
equations corresponding to the pendulum equations (4.2) for a special
class of orbits, namely, nearly circular orbits in the equatorial plane.
This restriction is convenient because we want to consider the longi-
as the perturbation and J

tude dependent term V. as the per-

22 22

turbation parameter. In other words, the unperturbed potential is

Vo= ko ;”? J, P,(sing).
For equatorial orbits, sin9 =0, and the unperturbed problem is an
integrable central force problem. If we make the additional restriction
that the unperturbed orbit is geometrically circular, then the algebraic
details will not obscure our purpose, the application of the method of
averaging to typical nonlinear resonance problems.

With the center of mass of the Earth as the origin of an inertial

coordinate system, we set x = rcosw, y = rsinw. Then

T = %[i-z + 2 \;vz], the kinetic energy,
el N .2 j
(4.4) V= p 3 J2 3 3J22 cos 2\, the potential energy,
2r T
L =T - V, the Lagrangian,

where (compare with (4.1)) we have set sin¢=0, )\22 =0, and A =w - 8,
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The equations of motion are

d 8L L

& or - ar O
4 9L 3L _
dt gw 9w
or
2 2 J n9J
d’r <dw) W 3 "2 22
— - r{5) + 5 =-p> = - cos 2X
dtz dt r2 2 r4 r4
(4.5)
d /2 awy _ M0
rrall (=T = —3 sin2 X
r

We now take w as the independent variable and A, c, u, du/dw

as dependent variables, where

. o,2dw 1 du ¥
(4.6) A= w-86,c=r T Y1 dw o c
We verify that
dz_u+ = B 43k 2, By z 2%
wE 2 2 2 2% z 7 V22 cos
w c c c
1du de
T ¢ dw dw’
(4.7)
dc _ 675, .
aw - p u sin 217,
dx
aw - L-
cu

correspond to circular or

termined by the transcendental equations obtained by setting the
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derivatives equal to zero in (4.7),

u = Clz[l+é 7 u? +9J22u2cos 21\,

2 "2
_ e :
4.8) 0= - % 6uJ22 sin 2%,
0=1. —_
cu
Hence,
= ki
A= O,iz,ﬁ:n,
c= X,
u

If we were only interested in studying solutions near the equilibrium
solutions, then we would introduce normal coordinates relative to each of
the solutions of sin 2A = 0. However, if A is to be unrestricted, it is
more convenient to set JZZ = 0 in (4.8) and define our unperturbed orbit

by the equations,

U A R
4.9) u = 2 [T+ 5 Jzuo], Y =cuo -
o

It should be noted that this orbit has nonzero instantaneous eccentricity,
but is geometrically circular.
We now introduce variables Py Py Py which correspond to deviations

from the resonant amplitudes of section 2. Let
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BB /
z72 t V5 Pao

o}

u=u t v/JZZ[p3 +p, coswtp, sin wl,

—= =0+ JJZZ[O - p, sinw + p, cos wl.

Then, using (4.9), we find that

4.11)

or

(4.12)

where

dp

3 = -
Jw ° VJZZB(pl’pZ' P3:)‘,W- JZ’ JZZ)
dp; dp

2 ]
T o8 W t g Sinw = VJZZ C(pl,pz,p3, X, W3 JZ’JZZ)’

s dpy /T A J
o Sin W + To COS W = J22 D(pl’ Py Pys ks Wi JZ' 22),

dp

1_/—" .
T - JZZ{CCOSW—DSH’IW},
dp

2 .
T = 922 {C sin w + D cos w}
dp

3_ 4

dw _LJZZ B.
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2
B=-c=1z“—4u sin 2\,

(4.13)
I D—_dz_“+ N + B
227 T 2 U-3 "% T2
W c c
o
B S AT R
=3l zu -my)
c c
o
+9J22 > u cos 2
c
1 du de
"¢ dw dw
From (4.7) and (4.10), we have
R -
3 U -CZ u, = 22 {p3u +2u c (p3+6)
o o

+ /3,y 2(p3+6) +J,,p3(py +8) }.

O

du dc
Twoaw = I 167

1 M /T /T
- < Z(C2 + 5 P lu + /Iy, (py +0)
o
* (-p;sinw + p, cos w) sin 20},

with 6 =p1cosw+p2 sin w .

Therefore,
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C%(Pl cos w + P, sin w)
o

Vs _ 2 N
Isy D= Jz{(uo +2u CZ)p3 +2u
o

W . 2
+(/7,, —C—Z + J22p3)(P3 +p, cos w+t p, sinw) }
o

+9 /:izz(i2 + JJZZ p3)(u0 + /J22 (p3 + p, cos w
o
MIaaP3)ug b Vg

. 2 B
(4.14) + p, sin w)” cos 2A+ 6 JZZ(CZ +
[e]

(p3 +p cosw+p, sin w)) (-p, sin w + p, cos w) sin 21X

2 N
= J, {(u(-) +2u0;%—)p3+2uo—%(plcosw+p2s1nw)}
o

o

+9/7,, lz u, €08 21 +0 (3, /T, + 3p5)

C
o

After simplification, we have

dp
d_vx]; = _/JZZ {9 —l; u_ cos 2\ sin w
o
LLZ
+ 12 0—4 u, sin 2\ cos w}
o
-J {(u2 +2u &) sin w
2 %y o 2 P3
[
_L_].- . .
+2 ug CZ (p, cos w + p, sin w) sinw} +0 (J, '/322 + JZZ)’
o
(4.15)
dn
bt
—&VZ = /JZZ {9 clz u_ cos 2\ cos w
(cont'd)

o
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Sz s u_ sin 2X sin w}
c

2
+J2{(u0+2u ) py cos w

B
o 2
[o4
o]

+2u iz(plcosw+p2 sin w) cos w}

C
o

+0 (J2 /;r22 + JZZ),

dp3 I-LZ
o /T5s {12 —? u sin 2y} + 0 (JZZ).
[e]

Furthermore, from (4.7), (4.9), and (4.10), we have

c uz
d\ Y _ oo
& 'tz 7l- 2
cu cu
2 1
(4.16) SURY /T3 -2
=1- 1477, 7 py) 1+uo (py +6)
2
=/J {(-Z— C—O)p 2 (p, cos w + sin w)}
22 u, 2u 3 ag 1 P2
+0 (JZZ)
Since JZNMJZZ, and
dw 2
4. &w - = /
(4.17) Tt cu vy + 0 JZZ)’

w is a fast variable, and Py Ppo P )\ are slow variables. We now
average with respect to w and use (4.17) to obtain the first order

(in v JZZ) "averaged equations,
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dp
1 &

e = -ty K Py}
o

dp
2 _ i
- J2 {vy, 2 P
o]

(4.18)
dp
3 _ B .
T —VJZZ{YIZ 2u051n2)\},
o
CZ
- _ /3 2 _ o
—d—i *'JZZ{Y(uO'Zu)p?)}'

The qualitative effect of VZZ' the longitude dependent term in

the potential, is now easy to describe. From (4.18), we have

p, = s cos N{w - WO), p, = s sin N(w - Wo),
(4.19)
2 w
Py = '/JZZ v 12 u—4 ug r sin 2X (w') dw!',
c
(o]

where T = JZ Youg u./ci » 8, W are integration constants, and

)\ is a solution of the pendulum equation,

2
d"x .
— = G(Y,JZ,JZZ) sin 2 A,
dt
where
2 uz Ci Yo
G:Jzzlzy —4(2- m ),
c
o
Y
o7 T2 ¢
u
[e]

and ug is the positive function of vy and J2 determined by (4. 9).

From (4.10), we have
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R|—

=1 ST .
_i +VT,, [p3+p1 cos w + p, sin w].

Therefore, the radial distance will oscillate about its mean value.
The behavior of A, the longitude of the satellite, is more interesting
since it is strongly influenced by initial conditions. If X is near one
of the unstable equilibrium values (0 or ), or if P3 is large enough,
the satellite will slowly drift around the Earth. On the other hand,
if A\ is near one of the stable equilibrium values (+7 or -w) and if
Py is small enough, then the satellite will librate about the equili-
brium value. The libriation period can be shown to be proportional
to l//TZ—; the constant of proportionality is dependent on the initial
conditions.

Finally, we note that the pendulum equations (4.2) and (4. 20)
are compatible since
- - 2 3

2 1 -
=a (l-e ), a‘; —ao(l-eo), By ag

2
c
£
N
and from (4. 9) it follows that e, = O(JZ).

In conclusion, we note that since the pendulum equation (4.20)
was derived by the method of averaging, the error estimates of section
2 are applicable and we can now assert that the pendulum model is
valid over a time interval proportional to l/v‘JZZ, e.g., over a libra-
tion period. Statements of this type must be accompanied by the phrase
tif .]'22 is sufficiently small." However, numerical tests (which

will be discussed in another report) show that the theory can be used

for synchronous satellites of the Earth.
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